Page 1 Next

Displaying 1 – 20 of 93

Showing per page

Each H1/2–stable projection yields convergence and quasi–optimality of adaptive FEM with inhomogeneous Dirichlet data in Rd

M. Aurada, M. Feischl, J. Kemetmüller, M. Page, D. Praetorius (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider the solution of second order elliptic PDEs in Rd with inhomogeneous Dirichlet data by means of an h–adaptive FEM with fixed polynomial order p ∈ N. As model example serves the Poisson equation with mixed Dirichlet–Neumann boundary conditions, where the inhomogeneous Dirichlet data are discretized by use of an H1 / 2–stable projection, for instance, the L2–projection for p = 1 or the Scott–Zhang projection for general p ≥ 1. For error estimation, we use a residual error estimator which...

Edge finite elements for the approximation of Maxwell resolvent operator

Daniele Boffi, Lucia Gastaldi (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we consider the Maxwell resolvent operator and its finite element approximation. In this framework it is natural the use of the edge element spaces and to impose the divergence constraint in a weak sense with the introduction of a Lagrange multiplier, following an idea by Kikuchi [14]. We shall review some of the known properties for edge element approximations and prove some new result. In particular we shall prove a uniform convergence in the L 2 norm for the sequence of discrete operators....

Edge finite elements for the approximation of Maxwell resolvent operator

Daniele Boffi, Lucia Gastaldi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we consider the Maxwell resolvent operator and its finite element approximation. In this framework it is natural the use of the edge element spaces and to impose the divergence constraint in a weak sense with the introduction of a Lagrange multiplier, following an idea by Kikuchi [14]. We shall review some of the known properties for edge element approximations and prove some new result. In particular we shall prove a uniform convergence in the L2 norm for the sequence of discrete...

Efficient greedy algorithms for high-dimensional parameter spaces with applications to empirical interpolation and reduced basis methods

Jan S. Hesthaven, Benjamin Stamm, Shun Zhang (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We propose two new algorithms to improve greedy sampling of high-dimensional functions. While the techniques have a substantial degree of generality, we frame the discussion in the context of methods for empirical interpolation and the development of reduced basis techniques for high-dimensional parametrized functions. The first algorithm, based on a saturation assumption of the error in the greedy algorithm, is shown to result in a significant reduction of the workload over the standard greedy...

Efficient numerical solution of mixed finite element discretizations by adaptive multilevel methods

Ronald H.W. Hoppe, Barbara Wohlmuth (1995)

Applications of Mathematics

We consider mixed finite element discretizations of second order elliptic boundary value problems. Emphasis is on the efficient iterative solution by multilevel techniques with respect to an adaptively generated hierarchy of nonuniform triangulations. In particular, we present two multilevel solvers, the first one relying on ideas from domain decomposition and the second one resulting from mixed hybridization. Local refinement of the underlying triangulations is done by efficient and reliable a...

Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations

Martin A. Grepl, Yvon Maday, Ngoc C. Nguyen, Anthony T. Patera (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we extend the reduced-basis approximations developed earlier for linear elliptic and parabolic partial differential equations with affine parameter dependence to problems involving (a) nonaffine dependence on the parameter, and (b) nonlinear dependence on the field variable. The method replaces the nonaffine and nonlinear terms with a coefficient function approximation which then permits an efficient offline-online computational decomposition. We first review the coefficient function...

Electrowetting of a 3D drop: numerical modelling with electrostatic vector fields

Patrick Ciarlet Jr., Claire Scheid (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The electrowetting process is commonly used to handle very small amounts of liquid on a solid surface. This process can be modelled mathematically with the help of the shape optimization theory. However, solving numerically the resulting shape optimization problem is a very complex issue, even for reduced models that occur in simplified geometries. Recently, the second author obtained convincing results in the 2D axisymmetric case. In this paper, we propose and analyze a method that is suitable...

Embedding and a priori wavelet-adaptivity for Dirichlet problems

Andreas Rieder (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The accuracy of the domain embedding method from [A. Rieder, Modél. Math. Anal. Numér.32 (1998) 405-431] for the solution of Dirichlet problems suffers under a coarse boundary approximation. To overcome this drawback the method is furnished with an a priori (static) strategy for an adaptive approximation space refinement near the boundary. This is done by selecting suitable wavelet subspaces. Error estimates and numerical experiments validate the proposed adaptive scheme. In contrast to similar,...

Energetics and switching of quasi-uniform states in small ferromagnetic particles

François Alouges, Sergio Conti, Antonio DeSimone, Yvo Pokern (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present a numerical algorithm to solve the micromagnetic equations based on tangential-plane minimization for the magnetization update and a homothethic-layer decomposition of outer space for the computation of the demagnetization field. As a first application, detailed results on the flower-vortex transition in the cube of Micromagnetic Standard Problem number 3 are obtained, which confirm, with a different method, those already present in the literature, and validate our method and code. We...

Energetics and switching of quasi-uniform states in small ferromagnetic particles

François Alouges, Sergio Conti, Antonio DeSimone, Yvo Pokern (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a numerical algorithm to solve the micromagnetic equations based on tangential-plane minimization for the magnetization update and a homothethic-layer decomposition of outer space for the computation of the demagnetization field. As a first application, detailed results on the flower-vortex transition in the cube of Micromagnetic Standard Problem number 3 are obtained, which confirm, with a different method, those already present in the literature, and validate our method and...

Currently displaying 1 – 20 of 93

Page 1 Next