Page 1 Next

Displaying 1 – 20 of 30

Showing per page

Identification of critical curves. II. Discretization and numerical realization

Jaroslav Haslinger, Václav Horák, Pekka Neittaanmäki, Kimmo Salmenjoki (1991)

Applications of Mathematics

We consider the finite element approximation of the identification problem, where one wishes to identify a curve along which a given solution of the boundary value problem possesses some specific property. We prove the convergence of FE-approximation and give some results of numerical tests.

Image segmentation with a finite element method

Blaise Bourdin (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The Mumford-Shah functional for image segmentation is an original approach of the image segmentation problem, based on a minimal energy criterion. Its minimization can be seen as a free discontinuity problem and is based on Γ-convergence and bounded variation functions theories. Some new regularization results, make possible to imagine a finite element resolution method. In a first time, the Mumford-Shah functional is introduced and some existing results are quoted. Then, a discrete formulation...

Implementation of optimal Galerkin and Collocation approximations of PDEs with Random Coefficients⋆⋆⋆

J. Beck, F. Nobile, L. Tamellini, R. Tempone (2011)

ESAIM: Proceedings

In this work we first focus on the Stochastic Galerkin approximation of the solution u of an elliptic stochastic PDE. We rely on sharp estimates for the decay of the coefficients of the spectral expansion of u on orthogonal polynomials to build a sequence of polynomial subspaces that features better convergence properties compared to standard polynomial subspaces such as Total Degree or Tensor Product. We consider then the Stochastic Collocation method, and use the previous estimates to introduce...

Implicit a posteriori error estimation using patch recovery techniques

Tamás Horváth, Ferenc Izsák (2012)

Open Mathematics

We develop implicit a posteriori error estimators for elliptic boundary value problems. Local problems are formulated for the error and the corresponding Neumann type boundary conditions are approximated using a new family of gradient averaging procedures. Convergence properties of the implicit error estimator are discussed independently of residual type error estimators, and this gives a freedom in the choice of boundary conditions. General assumptions are elaborated for the gradient averaging...

Improved flux reconstructions in one dimension

Vlasák, Miloslav, Lamač, Jan (2023)

Programs and Algorithms of Numerical Mathematics

We present an improvement to the direct flux reconstruction technique for equilibrated flux a posteriori error estimates for one-dimensional problems. The verification of the suggested reconstruction is provided by numerical experiments.

Improved successive constraint method based a posteriori error estimate for reduced basis approximation of 2D Maxwell's problem

Yanlai Chen, Jan S. Hesthaven, Yvon Maday, Jerónimo Rodríguez (2009)

ESAIM: Mathematical Modelling and Numerical Analysis


In a posteriori error analysis of reduced basis approximations to affinely parametrized partial differential equations, the construction of lower bounds for the coercivity and inf-sup stability constants is essential. In [Huynh et al., C. R. Acad. Sci. Paris Ser. I Math.345 (2007) 473–478], the authors presented an efficient method, compatible with an off-line/on-line strategy, where the on-line computation is reduced to minimizing a linear functional under a few linear constraints. These constraints...

Inf-sup stable nonconforming finite elements of higher order on quadrilaterals and hexahedra

Gunar Matthies (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

We present families of scalar nonconforming finite elements of arbitrary order r 1 with optimal approximation properties on quadrilaterals and hexahedra. Their vector-valued versions together with a discontinuous pressure approximation of order r - 1 form inf-sup stable finite element pairs of order r for the Stokes problem. The well-known elements by Rannacher and Turek are recovered in the case r=1. A numerical comparison between conforming and nonconforming discretisations will be given. Since higher order...

Inner products in covolume and mimetic methods

Kathryn A. Trapp (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

A class of compatible spatial discretizations for solving partial differential equations is presented. A discrete exact sequence framework is developed to classify these methods which include the mimetic and the covolume methods as well as certain low-order finite element methods. This construction ensures discrete analogs of the differential operators that satisfy the identities and theorems of vector calculus, in particular a Helmholtz decomposition theorem for the discrete function spaces. This...

Internal finite element approximation in the dual variational method for the biharmonic problem

Ivan Hlaváček, Michal Křížek (1985)

Aplikace matematiky

A conformal finite element method is investigated for a dual variational formulation of the biharmonic problem with mixed boundary conditions on domains with piecewise smooth curved boundary. Thus in the problem of elastic plate the bending moments are calculated directly. For the construction of finite elements a vector potential is used together with C 0 -elements. The convergence of the method is proved and an algorithm described.

Internal finite element approximations in the dual variational method for second order elliptic problems with curved boundaries

Ivan Hlaváček, Michal Křížek (1984)

Aplikace matematiky

Using the stream function, some finite element subspaces of divergence-free vector functions, the normal components of which vanish on a part of the piecewise smooth boundary, are constructed. Applying these subspaces, an internal approximation of the dual problem for second order elliptic equations is defined. A convergence of this method is proved without any assumption of a regularity of the solution. For sufficiently smooth solutions an optimal rate of convergence is proved. The internal approximation...

Interpolation of non-smooth functions on anisotropic finite element meshes

Thomas Apel (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, several modifications of the quasi-interpolation operator of Scott and Zhang [30] are discussed. The modified operators are defined for non-smooth functions and are suited for application on anisotropic meshes. The anisotropy of the elements is reflected in the local stability and approximation error estimates. As an application, an example is considered where anisotropic finite element meshes are appropriate, namely the Poisson problem in domains with edges.

Currently displaying 1 – 20 of 30

Page 1 Next