The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We analyze a general multigrid method with aggressive coarsening and polynomial smoothing. We use a special polynomial smoother that originates in the context of the smoothed aggregation method. Assuming the degree of the smoothing polynomial is, on each level , at least , we prove a convergence result independent of . The suggested smoother is cheaper than the overlapping Schwarz method that allows to prove the same result. Moreover, unlike in the case of the overlapping Schwarz method, analysis...
We study new a posteriori error estimates of the mixed finite element methods for general optimal control problems governed by nonlinear parabolic equations. The state and the co-state are discretized by the high order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a posteriori error estimates in -norm and -norm for both the state, the co-state and the control approximation. Such estimates, which seem to be new, are an important...
In this paper we introduce and analyze new mixed finite volume methods for second order elliptic problems
which are based on H(div)-conforming approximations for the vector variable and
discontinuous approximations for the scalar variable.
The discretization is fulfilled by combining the ideas of the traditional finite volume box method and
the local discontinuous Galerkin method.
We propose two different types of methods, called Methods I and II, and show that they have distinct advantages
over...
In this paper we are concerned with a distributed optimal control problem governed by an elliptic partial differential equation. State constraints of box type are considered. We show that the Lagrange multiplier associated with the state constraints, which is known to be a measure, is indeed more regular under quite general assumptions. We discretize the problem by continuous piecewise linear finite elements and we are able to prove that, for the case of a linear equation, the order of convergence...
This paper presents a unified framework for the dual-weighted residual (DWR) method for a class of nonconforming FEM. Our approach is based on a modification of the dual problem and uses various ideas from literature which are combined in a new manner. The results are new error identities for some nonconforming FEM. Additionally, a posteriori error estimates with respect to the discrete -seminorm are derived.
We provide new sufficient conditions for the convergence of the secant method to a locally unique solution of a nonlinear equation in a Banach space. Our new idea uses “Lipschitz-type” and center-“Lipschitz-type” instead of just “Lipschitz-type” conditions on the divided difference of the operator involved. It turns out that this way our error bounds are more precise than the earlier ones and under our convergence hypotheses we can cover cases where the earlier conditions are violated.
We compute numerically the minimizers of the Dirichlet energyamong maps from the unit disc into the unit sphere that satisfy a boundary condition and a degree condition. We use a Sobolev gradient algorithm for the minimization and we prove that its continuous version preserves the degree. For the discretization of the problem we use continuous finite elements. We propose an original mesh-refining strategy needed to preserve the degree with the discrete version of the algorithm (which is a preconditioned...
We compute numerically the minimizers of the Dirichlet energy
among maps from the unit disc into the unit sphere that satisfy a boundary condition and a degree condition.
We use a Sobolev gradient algorithm for the minimization and we prove that its continuous version preserves the degree. For the discretization of the problem we use continuous P1 finite elements. We propose an original mesh-refining strategy needed to preserve the degree with the discrete version of the algorithm (which...
The paper deals with error estimates and lower bound approximations of the Steklov eigenvalue problems on convex or concave domains by nonconforming finite element methods. We consider four types of nonconforming finite elements: Crouzeix-Raviart, , and enriched Crouzeix-Raviart. We first derive error estimates for the nonconforming finite element approximations of the Steklov eigenvalue problem and then give the analysis of lower bound approximations. Some numerical results are presented to...
Low-order nonconforming Galerkin methods will be analyzed for second-order
elliptic equations subjected to Robin, Dirichlet, or Neumann boundary
conditions. Both simplicial and rectangular elements will be considered in two
and three dimensions. The simplicial elements will be based on P1, as for
conforming elements; however, it is necessary to introduce new elements in the
rectangular case. Optimal order error estimates are demonstrated in all cases
with respect to a broken norm in H1(Ω)...
Compared to conforming P1 finite elements, nonconforming P1 finite element discretizations are thought to be less sensitive to the appearance of distorted triangulations. E.g., optimal-order discrete norm best approximation error estimates for functions hold for arbitrary triangulations. However, the constants in similar estimates for the error of the Galerkin projection for second-order elliptic problems show a dependence on the maximum angle of all triangles in the triangulation. We demonstrate...
Approximation of nonhomogeneous boundary conditions of Dirichlet and Neumann types is suggested in solving boundary value problems of elliptic equations by the finite element method. Curved triangular elements are considered. In the first part of the paper the convergence of the finite element method is analyzed in the case of nonhomogeneous Dirichlet problem for elliptic equations of order , in the second part of the paper in the case of nonhomogeneous mixed boundary value problem for second order...
The paper deals with boundary value problems for systems of nonlinear elliptic equations in a relatively general form. Theorems based on monotone operator theory and concerning the existence of weak solutions of such a system, as well as the convergence of discretized problem solutions are presented. As an example, the approach is applied to the stationary Van Roosbroeck’s system, arising in semiconductor device modelling. A convergent algorithm suitable for solving sets of algebraic equations generated...
Currently displaying 1 –
20 of
74