L...-Error Estimate for an Approximation of a Parabolic Variational Inequality.
The computation of nonlinear quasistationary two-dimensional magnetic fields leads to a nonlinear second order parabolic-elliptic initial-boundary value problem. Such a problem with a nonhomogeneous Dirichlet boundary condition on a part of the boundary is studied in this paper. The problem is discretized in space by the finite element method with linear functions on triangular elements and in time by the implicit-explicit method (the left-hand side by the implicit Euler method and the right-hand...
Consider a second-order elliptic boundary value problem in three dimensions with locally smooth coefficients and solution. Discuss local superconvergence estimates for the tensor-product finite element approximation on a regular family of rectangular meshes. It will be shown that, by the estimates for the discrete Green’s function and discrete derivative Green’s function, and the relationship of norms in the finite element space such as -norms, -norms, and negative-norms in locally smooth subsets...
The present paper proposes and analyzes a general locking free mixed strategy for computing the deformation of incompressible three dimensional structures placed inside flexible membranes. The model involves as in Chapelle and Ferent [Math. Models Methods Appl. Sci.13 (2003) 573–595] a bending dominated shell envelope and a quasi incompressible elastic body. The present work extends an earlier work of Arnold and Brezzi [Math Comp.66 (1997) 1–14] treating the shell part and proposes a global...
We consider mixed and hybrid variational formulations to the linearized elasticity system in domains with cracks. Inequality type conditions are prescribed at the crack faces which results in unilateral contact problems. The variational formulations are extended to the whole domain including the cracks which yields, for each problem, a smooth domain formulation. Mixed finite element methods such as PEERS or BDM methods are designed to avoid locking for nearly incompressible materials in plane elasticity....
This paper investigates best rank-(r 1,..., r d) Tucker tensor approximation of higher-order tensors arising from the discretization of linear operators and functions in ℝd. Super-convergence of the best rank-(r 1,..., r d) Tucker-type decomposition with respect to the relative Frobenius norm is proven. Dimensionality reduction by the two-level Tucker-to-canonical approximation is discussed. Tensor-product representation of basic multi-linear algebra operations is considered, including inner, outer...