Displaying 41 – 60 of 97

Showing per page

Mixed finite element approximation of 3D contact problems with given friction : error analysis and numerical realization

Jaroslav Haslinger, Taoufik Sassi (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This contribution deals with a mixed variational formulation of 3D contact problems with the simplest model involving friction. This formulation is based on a dualization of the set of admissible displacements and the regularization of the non-differentiable term. Displacements are approximated by piecewise linear elements while the respective dual variables by piecewise constant functions on a dual partition of the contact zone. The rate of convergence is established provided that the solution...

Mixed finite element approximation of 3D contact problems with given friction: Error analysis and numerical realization

Jaroslav Haslinger, Taoufik Sassi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This contribution deals with a mixed variational formulation of 3D contact problems with the simplest model involving friction. This formulation is based on a dualization of the set of admissible displacements and the regularization of the non-differentiable term. Displacements are approximated by piecewise linear elements while the respective dual variables by piecewise constant functions on a dual partition of the contact zone. The rate of convergence is established provided that the solution...

Mixed finite element approximation of an MHD problem involving conducting and insulating regions : the 2D case

Jean Luc Guermond, Peter D. Minev (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We show that the Maxwell equations in the low frequency limit, in a domain composed of insulating and conducting regions, has a saddle point structure, where the electric field in the insulating region is the Lagrange multiplier that enforces the curl-free constraint on the magnetic field. We propose a mixed finite element technique for solving this problem, and we show that, under mild regularity assumption on the data, Lagrange finite elements can be used as an alternative to edge elements.

Mixed Finite Element approximation of an MHD problem involving conducting and insulating regions: the 2D case

Jean Luc Guermond, Peter D. Minev (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We show that the Maxwell equations in the low frequency limit, in a domain composed of insulating and conducting regions, has a saddle point structure, where the electric field in the insulating region is the Lagrange multiplier that enforces the curl-free constraint on the magnetic field. We propose a mixed finite element technique for solving this problem, and we show that, under mild regularity assumption on the data, Lagrange finite elements can be used as an alternative to edge elements.

Modelling and control in pseudoplate problem with discontinuous thickness

Ján Lovíšek (2009)

Applications of Mathematics

This paper concerns an obstacle control problem for an elastic (homogeneous) and isotropic) pseudoplate. The state problem is modelled by a coercive variational inequality, where control variable enters the coefficients of the linear operator. Here, the role of control variable is played by the thickness of the pseudoplate which need not belong to the set of continuous functions. Since in general problems of control in coefficients have no optimal solution, a class of the extended optimal control...

Currently displaying 41 – 60 of 97