Displaying 81 – 100 of 128

Showing per page

Error estimates of an efficient linearization scheme for a nonlinear elliptic problem with a nonlocal boundary condition

Marian Slodička (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider a nonlinear second order elliptic boundary value problem (BVP) in a bounded domain Ω dim with a nonlocal boundary condition. A Dirichlet BC containing an unknown additive constant, accompanied with a nonlocal (integral) Neumann side condition is prescribed at some boundary part Γ n . The rest of the boundary is equipped with Dirichlet or nonlinear Robin type BC. The solution is found via linearization. We design a robust and efficient approximation scheme. Error estimates for the linearization...

Error estimates of an efficient linearization scheme for a nonlinear elliptic problem with a nonlocal boundary condition

Marian Slodička (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a nonlinear second order elliptic boundary value problem (BVP) in a bounded domain Ω N with a nonlocal boundary condition. A Dirichlet BC containing an unknown additive constant, accompanied with a nonlocal (integral) Neumann side condition is prescribed at some boundary part Γn. The rest of the boundary is equipped with Dirichlet or nonlinear Robin type BC. The solution is found via linearization. We design a robust and efficient approximation scheme. Error estimates for...

Error estimation and adaptivity for nonlinear FE analysis

Antonio Huerta, Antonio Rodríguez-Ferran, Pedro Díez (2002)

International Journal of Applied Mathematics and Computer Science

An adaptive strategy for nonlinear finite-element analysis, based on the combination of error estimation and h-remeshing, is presented. Its two main ingredients are a residual-type error estimator and an unstructured quadrilateral mesh generator. The error estimator is based on simple local computations over the elements and the so-called patches. In contrast to other residual estimators, no flux splitting is required. The adaptive strategy is illustrated by means of a complex nonlinear problem:...

Error estimation for finite element solutions on meshes that contain thin elements

Kenta Kobayashi, Takuya Tsuchiya (2024)

Applications of Mathematics

In an error estimation of finite element solutions to the Poisson equation, we usually impose the shape regularity assumption on the meshes to be used. In this paper, we show that even if the shape regularity condition is violated, the standard error estimation can be obtained if ``bad'' elements that violate the shape regularity or maximum angle condition are covered virtually by simplices that satisfy the minimum angle condition. A numerical experiment illustrates the theoretical result.

Estimates for spline projections

J. H. Bramble, A. H. Schatz (1976)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Estimation of EDZ zones in great depths by elastic-plastic models

Sysala, Stanislav (2023)

Programs and Algorithms of Numerical Mathematics

This contribution is devoted to modeling damage zones caused by the excavation of tunnels and boreholes (EDZ zones) in connection with the issue of deep storage of spent nuclear fuel in crystalline rocks. In particular, elastic-plastic models with Mohr-Coulomb or Hoek-Brown yield criteria are considered. Selected details of the numerical solution to the corresponding problems are mentioned. Possibilities of elastic and elastic-plastic approaches are illustrated by a numerical example.

Evaluation of the condition number in linear systems arising in finite element approximations

Alexandre Ern, Jean-Luc Guermond (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper derives upper and lower bounds for the p -condition number of the stiffness matrix resulting from the finite element approximation of a linear, abstract model problem. Sharp estimates in terms of the meshsize h are obtained. The theoretical results are applied to finite element approximations of elliptic PDE's in variational and in mixed form, and to first-order PDE's approximated using the Galerkin–Least Squares technique or by means of a non-standard Galerkin technique in L1(Ω). Numerical...

Currently displaying 81 – 100 of 128