Displaying 1101 – 1120 of 2193

Showing per page

Iterative schemes for high order compact discretizations to the exterior Helmholtz equation∗

Yogi Erlangga, Eli Turkel (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider high order finite difference approximations to the Helmholtz equation in an exterior domain. We include a simplified absorbing boundary condition to approximate the Sommerfeld radiation condition. This yields a large, but sparse, complex system, which is not self-adjoint and not positive definite. We discretize the equation with a compact fourth or sixth order accurate scheme. We solve this large system of linear equations with a Krylov subspace iterative method. Since the method converges...

Iterative schemes for high order compact discretizations to the exterior Helmholtz equation∗

Yogi Erlangga, Eli Turkel (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider high order finite difference approximations to the Helmholtz equation in an exterior domain. We include a simplified absorbing boundary condition to approximate the Sommerfeld radiation condition. This yields a large, but sparse, complex system, which is not self-adjoint and not positive definite. We discretize the equation with a compact fourth or sixth order accurate scheme. We solve this large system of linear equations with a Krylov subspace iterative method. Since the method converges...

Iteratively solving a kind of Signorini transmission problem in a unbounded domain

Qiya Hu, Dehao Yu (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we are concerned with a kind of Signorini transmission problem in a unbounded domain. A variational inequality is derived when discretizing this problem by coupled FEM-BEM. To solve such variational inequality, an iterative method, which can be viewed as a variant of the D-N alternative method, will be introduced. In the iterative method, the finite element part and the boundary element part can be solved independently. It will be shown that the convergence speed of this iteration...

Iteratively solving a kind of signorini transmission problem in a unbounded domain

Qiya Hu, Dehao Yu (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we are concerned with a kind of Signorini transmission problem in a unbounded domain. A variational inequality is derived when discretizing this problem by coupled FEM-BEM. To solve such variational inequality, an iterative method, which can be viewed as a variant of the D-N alternative method, will be introduced. In the iterative method, the finite element part and the boundary element part can be solved independently. It will be shown that the convergence speed of this iteration...

L 2 -error estimates for Dirichlet and Neumann problems on anisotropic finite element meshes

Thomas Apel, Dieter Sirch (2011)

Applications of Mathematics

An L 2 -estimate of the finite element error is proved for a Dirichlet and a Neumann boundary value problem on a three-dimensional, prismatic and non-convex domain that is discretized by an anisotropic tetrahedral mesh. To this end, an approximation error estimate for an interpolation operator that is preserving the Dirichlet boundary conditions is given. The challenge for the Neumann problem is the proof of a local interpolation error estimate for functions from a weighted Sobolev space.

Currently displaying 1101 – 1120 of 2193