Displaying 1261 – 1280 of 2184

Showing per page

Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems

Jim Douglas Jr., Juan E. Santos, Dongwoo Sheen, Xiu Ye (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Low-order nonconforming Galerkin methods will be analyzed for second-order elliptic equations subjected to Robin, Dirichlet, or Neumann boundary conditions. Both simplicial and rectangular elements will be considered in two and three dimensions. The simplicial elements will be based on P1, as for conforming elements; however, it is necessary to introduce new elements in the rectangular case. Optimal order error estimates are demonstrated in all cases with respect to a broken norm in H1(Ω)...

Nonconforming P1 elements on distorted triangulations: Lower bounds for the discrete energy norm error

Peter Oswald (2017)

Applications of Mathematics

Compared to conforming P1 finite elements, nonconforming P1 finite element discretizations are thought to be less sensitive to the appearance of distorted triangulations. E.g., optimal-order discrete H 1 norm best approximation error estimates for H 2 functions hold for arbitrary triangulations. However, the constants in similar estimates for the error of the Galerkin projection for second-order elliptic problems show a dependence on the maximum angle of all triangles in the triangulation. We demonstrate...

Nonhomogeneous boundary conditions and curved triangular finite elements

Alexander Ženíšek (1981)

Aplikace matematiky

Approximation of nonhomogeneous boundary conditions of Dirichlet and Neumann types is suggested in solving boundary value problems of elliptic equations by the finite element method. Curved triangular elements are considered. In the first part of the paper the convergence of the finite element method is analyzed in the case of nonhomogeneous Dirichlet problem for elliptic equations of order 2 m + 2 , in the second part of the paper in the case of nonhomogeneous mixed boundary value problem for second order...

Nonlinear boundary value problems with application to semiconductor device equations

Miroslav Pospíšek (1994)

Applications of Mathematics

The paper deals with boundary value problems for systems of nonlinear elliptic equations in a relatively general form. Theorems based on monotone operator theory and concerning the existence of weak solutions of such a system, as well as the convergence of discretized problem solutions are presented. As an example, the approach is applied to the stationary Van Roosbroeck’s system, arising in semiconductor device modelling. A convergent algorithm suitable for solving sets of algebraic equations generated...

Nonobtuse tetrahedral partitions that refine locally towards Fichera-like corners

Larisa Beilina, Sergey Korotov, Michal Křížek (2005)

Applications of Mathematics

Linear tetrahedral finite elements whose dihedral angles are all nonobtuse guarantee the validity of the discrete maximum principle for a wide class of second order elliptic and parabolic problems. In this paper we present an algorithm which generates nonobtuse face-to-face tetrahedral partitions that refine locally towards a given Fichera-like corner of a particular polyhedral domain.

Nouvelles formulations intégrales pour les problèmes de diffraction d’ondes

David P. Levadoux, Bastiaan L. Michielsen (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present an integral equation method for solving boundary value problems of the Helmholtz equation in unbounded domains. The method relies on the factorisation of one of the Calderón projectors by an operator approximating the exterior admittance (Dirichlet to Neumann) operator of the scattering obstacle. We show how the pseudo-differential calculus allows us to construct such approximations and that this yields integral equations without internal resonances and being well-conditioned at all frequencies....

Nouvelles formulations intégrales pour les problèmes de diffraction d'ondes

David P. Levadoux, Bastiaan L. Michielsen (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present an integral equation method for solving boundary value problems of the Helmholtz equation in unbounded domains. The method relies on the factorisation of one of the Calderón projectors by an operator approximating the exterior admittance (Dirichlet to Neumann) operator of the scattering obstacle. We show how the pseudo-differential calculus allows us to construct such approximations and that this yields integral equations without internal resonances and being well-conditioned at all...

Numerical algorithms for perspective shape from shading

Michael Breuss, Emiliano Cristiani, Jean-Denis Durou, Maurizio Falcone, Oliver Vogel (2010)

Kybernetika

The Shape-From-Shading (SFS) problem is a fundamental and classic problem in computer vision. It amounts to compute the 3-D depth of objects in a single given 2-D image. This is done by exploiting information about the illumination and the image brightness. We deal with a recent model for Perspective SFS (PSFS) for Lambertian surfaces. It is defined by a Hamilton–Jacobi equation and complemented by state constraints boundary conditions. In this paper we investigate and compare three state-of-the-art...

Numerical analysis for optimal shape design in elliptic boundary value problems

Zdeněk Kestřánek (1988)

Aplikace matematiky

Shape optimization problems are optimal design problems in which the shape of the boundary plays the role of a design, i.e. the unknown part of the problem. Such problems arise in structural mechanics, acoustics, electrostatics, fluid flow and other areas of engineering and applied science. The mathematical theory of such kind of problems has been developed during the last twelve years. Recently the theory has been extended to cover also situations in which the behaviour of the system is governed...

Numerical analysis of a frictionless viscoelastic piezoelectric contact problem

Mikael Barboteu, Jose Ramon Fernández, Youssef Ouafik (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work, we consider the quasistatic frictionless contact problem between a viscoelastic piezoelectric body and a deformable obstacle. The linear electro-viscoelastic constitutive law is employed to model the piezoelectric material and the normal compliance condition is used to model the contact. The variational formulation is derived in a form of a coupled system for the displacement and electric potential fields. An existence and uniqueness result is recalled. Then, a fully discrete scheme...

Currently displaying 1261 – 1280 of 2184