Displaying 1581 – 1600 of 2193

Showing per page

On the second-order convergence of a function reconstructed from finite volume approximations of the Laplace equation on Delaunay-Voronoi meshes

Pascal Omnes (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

Cell-centered and vertex-centered finite volume schemes for the Laplace equation with homogeneous Dirichlet boundary conditions are considered on a triangular mesh and on the Voronoi diagram associated to its vertices. A broken P1 function is constructed from the solutions of both schemes. When the domain is two-dimensional polygonal convex, it is shown that this reconstruction converges with second-order accuracy towards the exact solution in the L2 norm, under the sufficient condition that the...

On the solution of a finite element approximation of a linear obstacle plate problem

Luis Fernandes, Isabel Figueiredo, Joaquim Júdice (2002)

International Journal of Applied Mathematics and Computer Science

In this paper the solution of a finite element approximation of a linear obstacle plate problem is investigated. A simple version of an interior point method and a block pivoting algorithm have been proposed for the solution of this problem. Special purpose implementations of these procedures are included and have been used in the solution of a set of test problems. The results of these experiences indicate that these procedures are quite efficient to deal with these instances and compare favourably...

On the stability of Bravais lattices and their Cauchy–Born approximations

Thomas Hudson, Christoph Ortner (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We investigate the stability of Bravais lattices and their Cauchy–Born approximations under periodic perturbations. We formulate a general interaction law and derive its Cauchy–Born continuum limit. We then analyze the atomistic and Cauchy–Born stability regions, that is, the sets of all matrices that describe a stable Bravais lattice in the atomistic and Cauchy–Born models respectively. Motivated by recent results in one dimension on the stability of atomistic/continuum coupling methods, we analyze...

On the stability of Bravais lattices and their Cauchy–Born approximations*

Thomas Hudson, Christoph Ortner (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We investigate the stability of Bravais lattices and their Cauchy–Born approximations under periodic perturbations. We formulate a general interaction law and derive its Cauchy–Born continuum limit. We then analyze the atomistic and Cauchy–Born stability regions, that is, the sets of all matrices that describe a stable Bravais lattice in the atomistic and Cauchy–Born models respectively. Motivated by recent results in one dimension on the stability of atomistic/continuum coupling methods,...

On the Unilateral Contact Between Membranes. Part 1: Finite Element Discretization and Mixed Reformulation

F. Ben Belgacem, C. Bernardi, A. Blouza, M. Vohralík (2009)

Mathematical Modelling of Natural Phenomena

The contact between two membranes can be described by a system of variational inequalities, where the unknowns are the displacements of the membranes and the action of a membrane on the other one. We first perform the analysis of this system. We then propose a discretization, where the displacements are approximated by standard finite elements and the action by a local postprocessing. Such a discretization admits an equivalent mixed reformulation. We prove the well-posedness of the discrete problem...

On the worst scenario method: Application to a quasilinear elliptic 2D-problem with uncertain coefficients

Petr Harasim (2011)

Applications of Mathematics

We apply a theoretical framework for solving a class of worst scenario problems to a problem with a nonlinear partial differential equation. In contrast to the one-dimensional problem investigated by P. Harasim in Appl. Math. 53 (2008), No. 6, 583–598, the two-dimensional problem requires stronger assumptions restricting the admissible set to ensure the monotonicity of the nonlinear operator in the examined state problem, and, as a result, to show the existence and uniqueness of the state solution....

On time-harmonic Maxwell equations with nonhomogeneous conductivities: Solvability and FE-approximation

Michal Křížek, Pekka Neittaanmäki (1989)

Aplikace matematiky

The solvability of time-harmonic Maxwell equations in the 3D-case with nonhomogeneous conductivities is considered by adapting Sobolev space technique and variational formulation of the problem in question. Moreover, a finite element approximation is presented in the 3D-case together with an error estimate in the energy norm. Some remarks are given to the 2D-problem arising from geophysics.

Operational Methods in the Environment of a Computer Algebra System

Spiridonova, Margarita (2009)

Serdica Journal of Computing

This article presents the principal results of the doctoral thesis “Direct Operational Methods in the Environment of a Computer Algebra System” by Margarita Spiridonova (Institute of mathematics and Informatics, BAS), successfully defended before the Specialised Academic Council for Informatics and Mathematical Modelling on 23 March, 2009.The presented research is related to the operational calculus approach and its representative applications. Operational methods are considered, as well as their...

Operator preconditioning with efficient applications for nonlinear elliptic problems

Janos Karátson (2012)

Open Mathematics

This paper is devoted to the numerical solution of nonlinear elliptic partial differential equations. Such problems describe various phenomena in science. An approach that exploits Hilbert space theory in the numerical study of elliptic PDEs is the idea of preconditioning operators. In this survey paper we briefly summarize the main lines of this theory with various applications.

Currently displaying 1581 – 1600 of 2193