Displaying 21 – 40 of 229

Showing per page

A second-order multi-fluid model for evaporating sprays

Guillaume Dufour, Philippe Villedieu (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The aim of this paper is to present a method using both the ideas of sectional approach and moment methods in order to accurately simulate evaporation phenomena in gas-droplets flows. Using the underlying kinetic interpretation of the sectional method [Y. Tambour, Combust. Flame 60 (1985) 15–28] exposed in [F. Laurent and M. Massot, Combust. Theory Model. 5 (2001) 537–572], we propose an extension of this approach based on a more accurate representation of the droplet size number density in each...

A second-order multi-fluid model for evaporating sprays

Guillaume Dufour, Philippe Villedieu (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The aim of this paper is to present a method using both the ideas of sectional approach and moment methods in order to accurately simulate evaporation phenomena in gas-droplets flows. Using the underlying kinetic interpretation of the sectional method [Y. Tambour, Combust. Flame60 (1985) 15–28] exposed in [F. Laurent and M. Massot, Combust. Theory Model.5 (2001) 537–572], we propose an extension of this approach based on a more accurate representation of the droplet size number density in each...

A survey on wavelet methods for (geo) applications.

Willi Freeden, Thorsten Maier, Steffen Zimmermann (2003)

Revista Matemática Complutense

Wavelets originated in 1980's for the analysis of (seismic) signals and have seen an explosion of applications. However, almost all the material is based on wavelets over Euclidean spaces. This paper deals with an approach to the theory and algorithmic aspects of wavelets in a general separable Hilbert space framework. As examples Legendre wavelets on the interval [-1,+1] and scalar and vector spherical wavelets on the unit sphere 'Omega' are discussed in more detail.

A well-conditioned integral equation for iterative solution of scattering problems with a variable Leontovitch boundary condition

Sébastien Pernet (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The construction of a well-conditioned integral equation for iterative solution of scattering problems with a variable Leontovitch boundary condition is proposed. A suitable parametrix is obtained by using a new unknown and an approximation of the transparency condition. We prove the well-posedness of the equation for any wavenumber. Finally, some numerical comparisons with well-tried method prove the efficiency of the new formulation.

Accurate WKB Approximation for a 1D Problem with Low Regularity

Nier, F. (2008)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 34L40, 65L10, 65Z05, 81Q20.This article is concerned with the analysis of the WKB expansion in a classically forbidden region for a one dimensional boundary value Schrodinger equation with a non smooth potential. The assumed regularity of the potential is the one coming from a non linear problem and seems to be the critical one for which a good exponential decay estimate can be proved for the first remainder term. The treatment of the boundary conditions brings...

Adapting meshes and time-steps for phase change problems

Ricardo H. Nochetto, Alfred Schmidt, Claudio Verdi (1997)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We address the numerical approximation of the two-phase Stefan problem and discuss an adaptive finite element method based on rigorous a posteriori error estimation and refinement/coarsening. We also investigate how to restrict coarsening for the resulting method to be stable and convergent. We review implementation issues associated with bisection and conclude with simulations of a persistent corner singularity, for which adaptivity is an essential tool.

Currently displaying 21 – 40 of 229