Mouvement d'un projectile dans l'air
In this paper we present a geometrical formulation for Lagrangian systems subjected to non-holonomic constraints in terms of jet bundles. Cosymplectic geometry and almost product structures are used to obtained the constrained dynamics without using Lagrange multipliers method.
We show that the validity of the Carnot's theorem about the kinetic energy balance for a mechanical system subject to an inert impulsive kinetic constraint, once correctly framed in the time dependent geometric environment for Impulsive Mechanics given by the left and right jet bundles of the space-time bundle N, is strictly related to the frame of reference used to describe the system and then it is not an intrinsic property of the mechanical system itself. We analyze in details the class of frames...
A formulation of the D’Alembert principle as the orthogonal projection of the acceleration onto an affine plane determined by nonlinear nonholonomic constraints is given. Consequences of this formulation for the equations of motion are discussed in the context of several examples, together with the attendant singular reduction theory.
We obtain conditions under which a submanifold of a Poisson manifold has an induced Poisson structure, which encompass both the Poisson submanifolds of A. Weinstein [21] and the Poisson structures on the phase space of a mechanical system with kinematic constraints of Van der Schaft and Maschke [20]. Generalizations of these results for submanifolds of a Jacobi manifold are briefly sketched.
We establish the analytic non-integrability of the nonholonomic ellipsoidal rattleback model for a large class of parameter values. Our approach is based on the study of the monodromy group of the normal variational equations around a particular orbit. The imbedding of the equations of the heavy rigid body into the rattleback model is discussed.
The paper deals with the problem of finding the field of force that generates a given ()-parametric family of orbits for a mechanical system with degrees of freedom. This problem is usually referred to as the inverse problem of dynamics. We study this problem in relation to the problems of celestial mechanics. We state and solve a generalization of the Dainelli and Joukovski problem and propose a new approach to solve the inverse Suslov’s problem. We apply the obtained results to generalize the...
The inverse problem of the calculus of variations in a nonholonomic setting is studied. The concept of constraint variationality is introduced on the basis of a recently discovered nonholonomic variational principle. Variational properties of first order mechanical systems with general nonholonomic constraints are studied. It is shown that constraint variationality is equivalent with the existence of a closed representative in the class of 2-forms determining the nonholonomic system. Together with...
We consider nonholonomic systems with collisions and propose a concept of weak solutions to Lagrange-d'Alembert equations. Using this concept we describe the dynamics of collisions. Collisions of a rotating ball and a rough floor are considered.
A unified geometric approach to nonholonomic constrained mechanical systems is applied to several concrete problems from the classical mechanics of particles and rigid bodies. In every of these examples the given constraint conditions are analysed, a corresponding constraint submanifold in the phase space is considered, the corresponding constrained mechanical system is modelled on the constraint submanifold, the reduced equations of motion of this system (i.e. equations of motion defined on the...
Given a Lagrangian system with non-holonomic constraints we construct an almost product structure on the tangent bundle of the configuration manifold such that the projection of the Euler-Lagrange vector field gives the dynamics of the system. In a degenerate case, we develop a constraint algorithm which determines a final constraint submanifold where a completely consistent dynamics of the initial system exists.
In this paper we derive general equations for constraint Noethertype symmetries of a first order non-holonomic mechanical system and the corresponding currents, i.e. functions constant along trajectories of the nonholonomic system. The approach is based on a consistent and effective geometrical theory of nonholonomic constrained systems on fibred manifolds and their jet prolongations, first presented and developed by Olga Rossi. As a representative example of application of the geometrical theory...
In this paper we study the problem of the car with N trailers. It was proved in previous works ([9], [12]) that when each trailer is perpendicular with the previous one the degree of nonholonomy is Fn+3 (the (n+3)-th term of the Fibonacci's sequence) and that when no two consecutive trailers are perpendicular this degree is n+2. We compute here by induction the degree of non holonomy in every state and obtain a partition of the singular set by this degree of non-holonomy. We give also for...