Measure-differential inclusions in percussional dynamics.
We study the vibrations of lumped parameter systems, the spring being defined by the classical linear constitutive relationship between the spring force and the elongation while the dashpot is described by a general implicit relationship between the damping force and the velocity. We prove global existence of solutions for the governing equations, and discuss conditions that the implicit relation satisfies that are sufficient for the uniqueness of solutions. We also present some counterexamples...
Let Φ : H → R be a C2 function on a real Hilbert space and ∑ ⊂ H x R the manifold defined by ∑ := Graph (Φ). We study the motion of a material point with unit mass, subjected to stay on Σ and which moves under the action of the gravity force (characterized by g>0), the reaction force and the friction force ( is the friction parameter). For any initial conditions at time t=0, we prove the existence of a trajectory x(.) defined on R+. We are then interested in the asymptotic behaviour of...
Let be a function on a real Hilbert space and the manifold defined by Graph . We study the motion of a material point with unit mass, subjected to stay on and which moves under the action of the gravity force (characterized by ), the reaction force and the friction force ( is the friction parameter). For any initial conditions at time , we prove the existence of a trajectory defined on . We are then interested in the asymptotic behaviour of the trajectories when . More precisely,...
We study molecular motor-induced microtubule self-organization in dilute and semi-dilute filament solutions. In the dilute case, we use a probabilistic model of microtubule interaction via molecular motors to investigate microtubule bundle dynamics. Microtubules are modeled as polar rods interacting through fully inelastic, binary collisions. Our model indicates that initially disordered systems of interacting rods exhibit an orientational instability...