Page 1

Displaying 1 – 1 of 1

Showing per page

Exponentially long time stability for non-linearizable analytic germs of ( n , 0 ) .

Timoteo Carletti (2004)

Annales de l’institut Fourier

We study the Siegel-Schröder center problem on the linearization of analytic germs of diffeomorphisms in several complex variables, in the Gevrey- s , s > 0 category. We introduce a new arithmetical condition of Bruno type on the linear part of the given germ, which ensures the existence of a Gevrey- s formal linearization. We use this fact to prove the effective stability, i.e. stability for finite but long time, of neighborhoods of the origin, for the analytic germ.

Currently displaying 1 – 1 of 1

Page 1