Page 1

Displaying 1 – 5 of 5

Showing per page

On D’Alembert’s Principle

Larry M. Bates, James M. Nester (2011)

Communications in Mathematics

A formulation of the D’Alembert principle as the orthogonal projection of the acceleration onto an affine plane determined by nonlinear nonholonomic constraints is given. Consequences of this formulation for the equations of motion are discussed in the context of several examples, together with the attendant singular reduction theory.

On the mobility and efficiency of mechanical systems

Gershon Wolansky (2007)

ESAIM: Control, Optimisation and Calculus of Variations

It is shown that self-locomotion is possible for a body in Euclidian space, provided its dynamics corresponds to a non-quadratic Hamiltonian, and that the body contains at least 3 particles. The efficiency of the driver of such a system is defined. The existence of an optimal (most efficient) driver is proved.


Orbits of families of vector fields on subcartesian spaces

Jedrzej Śniatycki (2003)

Annales de l'Institut Fourier

Orbits of complete families of vector fields on a subcartesian space are shown to be smooth manifolds. This allows a description of the structure of the reduced phase space of a Hamiltonian system in terms of the reduced Poisson algebra. Moreover, one can give a global description of smooth geometric structures on a family of manifolds, which form a singular foliation of a subcartesian space, in terms of objects defined on the corresponding family of vector fields. Stratified...

Currently displaying 1 – 5 of 5

Page 1