Displaying 41 – 60 of 122

Showing per page

Global in time solvability of the initial boundary value problem for some nonlinear dissipative evolution equations

Yoshihiro Shibata (1993)

Commentationes Mathematicae Universitatis Carolinae

The global in time solvability of the one-dimensional nonlinear equations of thermoelasticity, equations of viscoelasticity and nonlinear wave equations in several space dimensions with some boundary dissipation is discussed. The blow up of the solutions which might be possible even for small data is excluded by allowing for a certain dissipative mechanism.

Higher order finite element approximation of a quasilinear elliptic boundary value problem of a non-monotone type

Liping Liu, Michal Křížek, Pekka Neittaanmäki (1996)

Applications of Mathematics

A nonlinear elliptic partial differential equation with homogeneous Dirichlet boundary conditions is examined. The problem describes for instance a stationary heat conduction in nonlinear inhomogeneous and anisotropic media. For finite elements of degree k 1 we prove the optimal rates of convergence 𝒪 ( h k ) in the H 1 -norm and 𝒪 ( h k + 1 ) in the L 2 -norm provided the true solution is sufficiently smooth. Considerations are restricted to domains with polyhedral boundaries. Numerical integration is not taken into account....

Il criterio dell'energia e l'equazione di Maxwell-Cattaneo nella termoelasticità non lineare

Ettore Laserra, Giovanni Matarazzo (1985)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

By means of the energy method we determine the behaviour of the canonical free energy of an elastic body, immersed in an environment that is thermally and mechanically passive; we use as constitutive equation for the heat flux a Maxwell-Cattaneo like equation.

L p - L q -Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity

Jerzy Gawinecki (1991)

Annales Polonici Mathematici

We prove the L p - L q -time decay estimates for the solution of the Cauchy problem for the hyperbolic system of partial differential equations of linear thermoelasticity. In our proof based on the matrix of fundamental solutions to the system we use Strauss-Klainerman’s approach [12], [5] to the L p - L q -time decay estimates.

Mathematical study of an evolution problem describing the thermomechanical process in shape memory alloys

Pierluigi Colli (1991)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this paper we prove existence, uniqueness, and continuous dependence for a one-dimensional time-dependent problem related to a thermo-mechanical model of structural phase transitions in solids. This model assumes the free energy depending on temperature, macroscopic deformation and also on the proportions of the phases. Here we neglect regularizing terms in the momentum balance equation and in the constitutive laws for the phase proportions.

Multipolar viscoelastic materials and the symmetry of the coefficients of viscosity

Miroslav Šilhavý (1992)

Applications of Mathematics

The integral constitutive equations of a multipolar viscoelastic material are analyzed from the thermodynamic point of view. They are shown to be approximated by those of the differential-type viscous materials when the processes are slow. As a consequence of the thermodynamic compatibility of the viscoelastic model, the coefficients of viscosity of the approximate viscous model are shown to have an Onsager-type symmetry. This symmetry was employed earlier in the proof of the existence of solutions...

Neumann problem for one-dimensional nonlinear thermoelasticity

Yoshihiro Shibata (1992)

Banach Center Publications

The global existence theorem of classical solutions for one-dimensional nonlinear thermoelasticity is proved for small and smooth initial data in the case of a bounded reference configuration for a homogeneous medium, considering the Neumann type boundary conditions: traction free and insulated. Moreover, the asymptotic behaviour of solutions is investigated.

Non-Fourier heat removal from hot nanosystems through graphene layer

A. Sellitto, F.X. Alvarez (2012)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

Nonlocal effects on heat transport beyond a simple Fourier description are analyzed in a thermodynamical model. In the particular case of hot nanosystems cooled through a graphene layer, it is shown that these effects may increase in a ten percent the amount of removed heat, as compared with classical predictions based on the Fourier law.

On coupled thermoelastic vibration of geometrically nonlinear thin plates satisfying generalized mechanical and thermal conditions on the boundary and on the surface

Hans-Ullrich Wenk (1982)

Aplikace matematiky

The vibration problem in two variables is derived from the spatial situation (a plate as a three-dimensional body) on the basis of geometrically nonlinear plate theory (using Kármán's hypothesis) and coupled linear thermoelasticity. That leads to coupled strongly nonlinear two-dimensional equilibrium and heat conducting equations (under classical mechanical and thermal boundary conditions). For the generalized problem with subgradient conditions on the boundary and in the domain (including also...

Currently displaying 41 – 60 of 122