Existence and uniqueness for wave propagation in inhomogeneous elastic solids
Internal parameters, eigenstrains, or eigenstresses, arise in functionally graded materials, which are typically present in particulate, layered, or rock bodies. These parameters may be realized in different ways, e.g., by prestressing, temperature changes, effects of wetting, swelling, they may also represent inelastic strains, etc. In order to clarify the use of eigenparameters (eigenstrains or eigenstresses) in physical description, the classical formulation of elasticity is presented, and the...
The present paper deals with numerical solution of a viscoelastic plate. The discrete problem is defined by -elements and a linear multistep method. The effect of numerical integration is studied as well. The rate of cnvergence is established. Some examples are given in the conclusion.
The purpose of this paper is to derive and study a new asymptotic model for the equilibrium state of a thin anisotropic piezoelectric plate in frictional contact with a rigid obstacle. In the asymptotic process, the thickness of the piezoelectric plate is driven to zero and the convergence of the unknowns is studied. This leads to two-dimensional Kirchhoff-Love plate equations, in which mechanical displacement and electric potential are partly decoupled. Based on this model numerical examples are presented...
Bhattacharya and Kohn have used small-strain (geometrically linear) elasticity to analyze the recoverable strains of shape-memory polycrystals. The adequacy of small-strain theory is open to question, however, since some shape-memory materials recover as much as 10 percent strain. This paper provides the first progress toward an analogous geometrically nonlinear theory. We consider a model problem, involving polycrystals made from a two-variant elastic material in two space dimensions. The linear theory...
We deduce a macroscopic strain gradient theory for plasticity from a model of discrete dislocations. We restrict our analysis to the case of a cylindrical symmetry for the crystal under study, so that the mathematical formulation will involve a two-dimensional variational problem. The dislocations are introduced as point topological defects of the strain fields, for which we compute the elastic energy stored outside the so-called core region. We show that the -limit of this energy (suitably rescaled),...
A unified framework for analyzing the existence of ground states in wide classes of elastic complex bodies is presented here. The approach makes use of classical semicontinuity results, Sobolev mappings and cartesian currents. Weak diffeomorphisms are used to represent macroscopic deformations. Sobolev maps and cartesian currents describe the inner substructure of the material elements. Balance equations for irregular minimizers are derived. A contribution to the debate about the role of the balance...
A unified framework for analyzing the existence of ground states in wide classes of elastic complex bodies is presented here. The approach makes use of classical semicontinuity results, Sobolev mappings and Cartesian currents. Weak diffeomorphisms are used to represent macroscopic deformations. Sobolev maps and Cartesian currents describe the inner substructure of the material elements. Balance equations for irregular minimizers are derived. A contribution to the debate about the role of the balance...