Displaying 101 – 120 of 222

Showing per page

Modelled behaviour of granular material during loading and unloading

Krejčí, Pavel, Siváková, Lenka, Chleboun, Jan (2019)

Programs and Algorithms of Numerical Mathematics

The main aim of this paper is to analyze numerically the model behaviour of a granular material during loading and unloading. The model was originally proposed by D. Kolymbas and afterward modified by E. Bauer. For our purposes the constitutive equation was transformed into a rate independent form by introducing a dimensionless time parameter. By this transformation we were able to derive explicit formulas for the strain-stress trajectories during loading-unloading cycles and compare the results...

Motion of spiral-shaped polygonal curves by nonlinear crystalline motion with a rotating tip motion

Tetsuya Ishiwata (2015)

Mathematica Bohemica

We consider a motion of spiral-shaped piecewise linear curves governed by a crystalline curvature flow with a driving force and a tip motion which is a simple model of a step motion of a crystal surface. We extend our previous result on global existence of a spiral-shaped solution to a linear crystalline motion for a power type nonlinear crystalline motion with a given rotating tip motion. We show that self-intersection of the solution curves never occurs and also show that facet extinction never...

Non-local damage modelling of quasi-brittle composites

Jiří Vala, Vladislav Kozák (2021)

Applications of Mathematics

Most building materials can be characterized as quasi-brittle composites with a cementitious matrix, reinforced by some stiffening particles or elements. Their massive exploitation motivates the development of numerical modelling and simulation of behaviour of such material class under mechanical, thermal, etc. loads, including the evaluation of the risk of initiation and development of micro- and macro-fracture. This paper demonstrates the possibility of certain deterministic prediction, applying...

On a variational problem arising in crystallography

Alexander J. Zaslavski (2007)

ESAIM: Control, Optimisation and Calculus of Variations

We study a variational problem which was introduced by Hannon, Marcus and Mizel [ESAIM: COCV9 (2003) 145–149] to describe step-terraces on surfaces of so-called “unorthodox” crystals. We show that there is no nondegenerate intervals on which the absolute value of a minimizer is π / 2 identically.

On quasistatic inelastic models of gradient type with convex composite constitutive equations

Krzysztof Chełmiński (2003)

Open Mathematics

This article defines and presents the mathematical analysis of a new class of models from the theory of inelastic deformations of metals. This new class, containing so called convex composite models, enlarges the class containing monotone models of gradient type defined in [1]. This paper starts to establish the existence theory for models from this new class; we restrict our investigations to the coercive and linear self-controlling case.

On the change of energy caused by crack propagation in 3-dimensional anisotropic solids

Martin Steigemann, Maria Specovius-Neugebauer (2014)

Mathematica Bohemica

Crack propagation in anisotropic materials is a persistent problem. A general concept to predict crack growth is the energy principle: A crack can only grow, if energy is released. We study the change of potential energy caused by a propagating crack in a fully three-dimensional solid consisting of an anisotropic material. Based on methods of asymptotic analysis (method of matched asymptotic expansions) we give a formula for the decrease in potential energy if a smooth inner crack grows along a...

On the domain of applicability of the Mori-Tanaka effective medium theory

Mauro Ferrari (1991)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The Mori-Tanaka effective stiffness tensor is shown to be asymmetric in general. This tensor is proven to be symmetric for composites with isotropic inclusions, or with spherical reinforcements. Symmetry is also proven for the case of unidirectional fibers, of any shape and material. The Mori-Tanaka theory is shown to yield physically unacceptable predictions at the high concentration limit.

On the mechanical behaviour of laminated curved beams: a simple model which takes into account the warping effects

Luigi Ascione, Fernando Fraternali (1990)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

A mechanical one-dimensional model which describes the dynamical behaviour of laminated curved beams is formulated. It is assumed that each lamina can be regarded as a Timoshenko's beam and that the rotations of the cross sections can differ from one lamina to another. The relative displacements at the interfaces of adjacent laminae are assumed to be zero. Consequently the model includes a shear deformability, due to the warping of the cross beam section consequent to the variability of the laminae...

On the nonlinear behaviour of bimodular multilayer ed plates.

Giacinto Porco, Giuseppe Spandea, Raffaele Zinno (1991)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In an earlier study [16] the nonlinear behaviour of unimodular laminated plates was studied. This paper, following the previous study, concerns a large deflection analysis of moderately thick rectangular plates having arbitrary boundary conditions and finite thickness shear moduli. The plates are manufactured in bimodular materials and constructed in a cross-ply fashion or in a single layer with arbitrary fibre direction angle. Numerical results are obtained by a finite element technique in which...

On the solution of boundary value problems for sandwich plates

Igor Bock, Ivan Hlaváček, Ján Lovíšek (1986)

Aplikace matematiky

A mathematical model of the equilibrium problem of elastic sandwich plates is established. Using the theory of inequalities of Korn's type for a general class of elliptic systems the existence and uniqueness of a variational solution is proved.

Optimum composite material design

Jaroslav Haslinger, Jan Dvořák (1995)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Currently displaying 101 – 120 of 222