Displaying 201 – 220 of 298

Showing per page

On the two-step iterative method of solving frictional contact problems in elasticity

Todor Angelov, Asterios Liolios (2005)

International Journal of Applied Mathematics and Computer Science

A class of contact problems with friction in elastostatics is considered. Under a certain restriction on the friction coefficient, the convergence of the two-step iterative method proposed by P.D. Panagiotopoulos is proved. Its applicability is discussed and compared with two other iterative methods, and the computed results are presented.

Optimal design of cylindrical shell with a rigid obstacle

Ján Lovíšek (1989)

Aplikace matematiky

The aim of the present paper is to study problems of optimal design in mechanics, whose variational form are inequalities expressing the principle of virtual power in its inequality form. We consider an optimal control problem in whixh the state of the system (involving an elliptic, linear symmetric operator, the coefficients of which are chosen as the design - control variables) is defined as the (unique) solution of stationary variational inequalities. The existence result proved in Section 1...

Parameters identification of material models based on the inverse analysis

Danuta Szeliga, Jerzy Gawąd, Maciej Pietrzyk (2004)

International Journal of Applied Mathematics and Computer Science

The paper presents an application of the inverse analysis to the identification of two models: a phase transformation model and a rheological model. The optimization algorithm for the inverse analysis was tested for various techniques of searching for the minimum: derivative-free and gradient methods, as well as genetic algorithms. Simulation results were validated for microalloyed niobium steel. An optimization strategy, which is adequate for the inverse analysis, is suggested.

Post-buckling range of plates in axial compression with uncertain initial geometric imperfections

Ivan Hlaváček (2002)

Applications of Mathematics

The method of reliable solutions alias the worst scenario method is applied to the problem of von Kármán equations with uncertain initial deflection. Assuming two-mode initial and total deflections and using Galerkin approximations, the analysis leads to a system of two nonlinear algebraic equations with one or two uncertain parameters-amplitudes of initial deflections. Numerical examples involve (i) minimization of lower buckling loads and (ii) maximization of the maximal mean reduced stress.

Quasi-static evolution for fatigue debonding

Alessandro Ferriero (2008)

ESAIM: Control, Optimisation and Calculus of Variations

The propagation of fractures in a solid undergoing cyclic loadings is known as the fatigue phenomenon. In this paper, we present a time continuous model for fatigue, in the special situation of the debonding of thin layers, coming from a time discretized version recently proposed by Jaubert and Marigo [C. R. Mecanique333 (2005) 550–556]. Under very general assumptions on the surface energy density and on the applied displacement, we discuss the well-posedness of our problem and we give the main...

Rank 1 convex hulls of isotropic functions in dimension 2 by 2

Miroslav Šilhavý (2001)

Mathematica Bohemica

Let f be a rotationally invariant (with respect to the proper orthogonal group) function defined on the set M 2 × 2 of all 2 by 2 matrices. Based on conditions for the rank 1 convexity of f in terms of signed invariants of 𝔸 (to be defined below), an iterative procedure is given for calculating the rank 1 convex hull of a rotationally invariant function. A special case in which the procedure terminates after the second step is determined and examples of the actual calculations are given.

RBF Based Meshless Method for Large Scale Shallow Water Simulations: Experimental Validation

Y. Alhuri, A. Naji, D. Ouazar, A. Taik (2010)

Mathematical Modelling of Natural Phenomena

2D shallow water equations with depth-averaged k−ε model is considered. A meshless method based on multiquadric radial basis functions is described. This methods is based on the collocation formulation and does not require the generation of a grid and any integral evaluation. The application of this method to a flow in horizontal channel, taken as an experimental device, is presented. The results of computations are compared with experimental data...

Regularity in kinetic formulations via averaging lemmas

Pierre-Emmanuel Jabin, Benoît Perthame (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We present a new class of averaging lemmas directly motivated by the question of regularity for different nonlinear equations or variational problems which admit a kinetic formulation. In particular they improve the known regularity for systems like γ = 3 in isentropic gas dynamics or in some variational problems arising in thin micromagnetic films. They also allow to obtain directly the best known regularizing effect in multidimensional scalar conservation laws. The new ingredient here is to use velocity...

Regularity in kinetic formulations via averaging lemmas

Pierre-Emmanuel Jabin, Benoît Perthame (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We present a new class of averaging lemmas directly motivated by the question of regularity for different nonlinear equations or variational problems which admit a kinetic formulation. In particular they improve the known regularity for systems like γ = 3 in isentropic gas dynamics or in some variational problems arising in thin micromagnetic films. They also allow to obtain directly the best known regularizing effect in multidimensional scalar conservation laws. The new ingredient here is to...

Regularity of solutions in plasticity. I: Continuum

Jarosław L. Bojarski (2003)

Applicationes Mathematicae

The aim of this paper is to study the problem of regularity of solutions in Hencky plasticity. We consider a non-homogeneous material whose elastic-plastic properties change discontinuously. We prove that the displacement solutions belong to the space L D ( Ω ) u L ¹ ( Ω , ) | u + ( u ) T L ¹ ( Ω , n × n ) if the stress solution is continuous and belongs to the interior of the set of admissible stresses, at each point. The part of the functional which describes the work of boundary forces is relaxed.

Regularity of solutions in plasticity. II: Plates

Jarosław L. Bojarski (2004)

Applicationes Mathematicae

The aim of this paper is to study the problem of regularity of displacement solutions in Hencky plasticity. We consider a plate made of a non-homogeneous material whose elastic-plastic properties change discontinuously. We prove that the displacement solutions belong to the space W 2 , 1 ( Ω ) if the stress solution is continuous and belongs to the interior of the set of admissible stresses, at each point. The part of the functional which describes the work of boundary forces is relaxed.

Remarks on the theory of elasticity

Sergio Conti, Camillo de Lellis (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

In compressible Neohookean elasticity one minimizes functionals which are composed by the sum of the L 2 norm of the deformation gradient and a nonlinear function of the determinant of the gradient. Non–interpenetrability of matter is then represented by additional invertibility conditions. An existence theory which includes a precise notion of invertibility and allows for cavitation was formulated by Müller and Spector in 1995. It applies, however, only if some L p -norm of the gradient with p > 2 is controlled...

Rigidity for the hyperbolic Monge-Ampère equation

Chun-Chi Lin (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Some properties of nonlinear partial differential equations are naturally associated with the geometry of sets in the space of matrices. In this paper we consider the model case when the compact set  K is contained in the hyperboloid - 1 , where - 1 𝕄 sym 2 × 2 , the set of symmetric 2 × 2 matrices. The hyperboloid - 1 is generated by two families of rank-one lines and related to the hyperbolic Monge-Ampère equation det 2 u = - 1 . For some compact subsets K - 1 containing a rank-one connection, we show the rigidity property of K by imposing...

Currently displaying 201 – 220 of 298