Displaying 121 – 140 of 298

Showing per page

General method of regularization. III: The unilateral contact problem

Jarosław L. Bojarski (2004)

Applicationes Mathematicae

The aim of this paper is to prove that the relaxation of the elastic-perfectly plastic energy (of a solid made of a Hencky material with the Signorini constraints on the boundary) is the weak* lower semicontinuous regularization of the plastic energy. We consider an elastic-plastic solid endowed with the von Mises (or Tresca) yield condition. Moreover, we show that the set of solutions of the relaxed problem is equal to the set of solutions of the relaxed problem proposed by Suquet. We deduce that...

Gradient theory for plasticity via homogenization of discrete dislocations

Adriana Garroni, Giovanni Leoni, Marcello Ponsiglione (2010)

Journal of the European Mathematical Society

We deduce a macroscopic strain gradient theory for plasticity from a model of discrete dislocations. We restrict our analysis to the case of a cylindrical symmetry for the crystal under study, so that the mathematical formulation will involve a two-dimensional variational problem. The dislocations are introduced as point topological defects of the strain fields, for which we compute the elastic energy stored outside the so-called core region. We show that the Γ -limit of this energy (suitably rescaled),...

Ground states in complex bodies

Paolo Maria Mariano, Giuseppe Modica (2009)

ESAIM: Control, Optimisation and Calculus of Variations

A unified framework for analyzing the existence of ground states in wide classes of elastic complex bodies is presented here. The approach makes use of classical semicontinuity results, Sobolev mappings and cartesian currents. Weak diffeomorphisms are used to represent macroscopic deformations. Sobolev maps and cartesian currents describe the inner substructure of the material elements. Balance equations for irregular minimizers are derived. A contribution to the debate about the role of the balance...

Ground states in complex bodies

Paolo Maria Mariano, Giuseppe Modica (2008)

ESAIM: Control, Optimisation and Calculus of Variations

A unified framework for analyzing the existence of ground states in wide classes of elastic complex bodies is presented here. The approach makes use of classical semicontinuity results, Sobolev mappings and Cartesian currents. Weak diffeomorphisms are used to represent macroscopic deformations. Sobolev maps and Cartesian currents describe the inner substructure of the material elements. Balance equations for irregular minimizers are derived. A contribution to the debate about the role of the balance...

Homogenization of many-body structures subject to large deformations

Philipp Emanuel Stelzig (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We give a first contribution to the homogenization of many-body structures that are exposed to large deformations and obey the noninterpenetration constraint. The many-body structures considered here resemble cord-belts like they are used to reinforce pneumatic tires. We establish and analyze an idealized model for such many-body structures in which the subbodies are assumed to be hyperelastic with a polyconvex energy density and shall exhibit an initial brittle bond with their neighbors. Noninterpenetration...

Homogenization of many-body structures subject to large deformations

Philipp Emanuel Stelzig (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We give a first contribution to the homogenization of many-body structures that are exposed to large deformations and obey the noninterpenetration constraint. The many-body structures considered here resemble cord-belts like they are used to reinforce pneumatic tires. We establish and analyze an idealized model for such many-body structures in which the subbodies are assumed to be hyperelastic with a polyconvex energy density and shall exhibit an...

Homogenization of periodic nonconvex integral functionals in terms of Young measures

Omar Anza Hafsa, Jean-Philippe Mandallena, Gérard Michaille (2006)

ESAIM: Control, Optimisation and Calculus of Variations

Homogenization of periodic functionals, whose integrands possess possibly multi-well structure, is treated in terms of Young measures. More precisely, we characterize the Γ -limit of sequences of such functionals in the set of Young measures, extending the relaxation theorem of Kinderlherer and Pedregal. We also make precise the relationship between our homogenized density and the classical one.

Homogenization of periodic nonconvex integral functionals in terms of Young measures

Omar Anza Hafsa, Jean-Philippe Mandallena, Gérard Michaille (2005)

ESAIM: Control, Optimisation and Calculus of Variations

Homogenization of periodic functionals, whose integrands possess possibly multi-well structure, is treated in terms of Young measures. More precisely, we characterize the Γ-limit of sequences of such functionals in the set of Young measures, extending the relaxation theorem of Kinderlherer and Pedregal. We also make precise the relationship between our homogenized density and the classical one.

Hypersingular integral equations and applications to porous elastic materials with periodic cracks

Michele Ciarletta, Gerardo Iovane (2005)

Bollettino dell'Unione Matematica Italiana

In this work a treatment of hypersingular integral equations, which have relevant applications in many problems of wave dynamics, elasticity and fluid mechanics with mixed boundary conditions, is presented. The first goal of the present study is the development of an efficient analytical and direct numerical collocation method. The second one is the application of the method to the porous elastic materials when a periodic array of co-planar cracks is present. Starting from Cowin- Nunziato model...

Iteratively solving a kind of Signorini transmission problem in a unbounded domain

Qiya Hu, Dehao Yu (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we are concerned with a kind of Signorini transmission problem in a unbounded domain. A variational inequality is derived when discretizing this problem by coupled FEM-BEM. To solve such variational inequality, an iterative method, which can be viewed as a variant of the D-N alternative method, will be introduced. In the iterative method, the finite element part and the boundary element part can be solved independently. It will be shown that the convergence speed of this iteration...

Iteratively solving a kind of signorini transmission problem in a unbounded domain

Qiya Hu, Dehao Yu (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we are concerned with a kind of Signorini transmission problem in a unbounded domain. A variational inequality is derived when discretizing this problem by coupled FEM-BEM. To solve such variational inequality, an iterative method, which can be viewed as a variant of the D-N alternative method, will be introduced. In the iterative method, the finite element part and the boundary element part can be solved independently. It will be shown that the convergence speed of this iteration...

Currently displaying 121 – 140 of 298