Page 1 Next

Displaying 1 – 20 of 25

Showing per page

Material constraints in continuum mechanics

Stuart S. Antman (1981)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si dimostra che ci sono valide ragioni per considerare la teoria standard dei vincoli interni, nella meccanica dei continui, insufficientemente generale. In particolare, con l’unica eccezione dell’iperelasticità, l’extra-stress dovrebbe dipendere anche dai moltiplicatori di Lagrange, cioè, dallo stress che non effettua lavoro (virtuale).

Mathematical analysis and numerical simulation of a Reynolds-Koiter model for the elastohydrodynamic journal-bearing device

Iñigo Arregui, J. Jesús Cendán, Carlos Vázquez (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The aim of this work is to deduce the existence of solution of a coupled problem arising in elastohydrodynamic lubrication. The lubricant pressure and concentration are modelled by Reynolds equation, jointly with the free-boundary Elrod-Adams model in order to take into account cavitation phenomena. The bearing deformation is solution of Koiter model for thin shells. The existence of solution to the variational problem presents some difficulties: the coupled character of the equations, the nonlinear...

Mathematical analysis and numerical simulation of a Reynolds-Koiter model for the elastohydrodynamic journal-bearing device

Iñigo Arregui, J. Jesús Cendán, Carlos Vázquez (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The aim of this work is to deduce the existence of solution of a coupled problem arising in elastohydrodynamic lubrication. The lubricant pressure and concentration are modelled by Reynolds equation, jointly with the free-boundary Elrod-Adams model in order to take into account cavitation phenomena. The bearing deformation is solution of Koiter model for thin shells. The existence of solution to the variational problem presents some difficulties: the coupled character of the equations, the nonlinear...

Mathematical modeling and simulation of flow in domains separated by leaky semipermeable membrane including osmotic effect

Jaroslav Hron, Maria Neuss-Radu, Petra Pustějovská (2011)

Applications of Mathematics

In this paper, we propose a mathematical model for flow and transport processes of diluted solutions in domains separated by a leaky semipermeable membrane. We formulate transmission conditions for the flow and the solute concentration across the membrane which take into account the property of the membrane to partly reject the solute, the accumulation of rejected solute at the membrane, and the influence of the solute concentration on the volume flow, known as osmotic effect. The model is solved...

Mathematical modelling of cable stayed bridges: existence, uniqueness, continuous dependence on data, homogenization of cable systems

Josef Malík (2004)

Applications of Mathematics

A model of a cable stayed bridge is proposed. This model describes the behaviour of the center span, the part between pylons, hung on one row of cable stays. The existence, the uniqueness of a solution of a time independent problem and the continuous dependence on data are proved. The existence and the uniqueness of a solution of a linearized dynamic problem are proved. A homogenizing procedure making it possible to replace cables by a continuous system is proposed. A nonlinear dynamic problem connected...

Mathematical modelling of rock bolt systems. II

Josef Malík (2000)

Applications of Mathematics

The main goal of the paper is to describe a reinforcement consisting of fully grouted bolts, which is applied to stabilizing underground openings and tunnels. After a variational formulation is given, the existence and uniqueness is proved. Some asymptotic results that make it possible to replace the real system with a continuous one more suitable for discretization are presented. Some other types of reinforcements and properties are studied.

Mathematical models of suspension bridges

Gabriela Tajčová (1997)

Applications of Mathematics

In this work we try to explain various mathematical models describing the dynamical behaviour of suspension bridges such as the Tacoma Narrows bridge. Our attention is concentrated on the derivation of these models, an interpretation of particular parameters and on a discussion of their advantages and disadvantages. Our work should be a starting point for a qualitative study of dynamical structures of this type and that is why we have a closer look at the models, which have not been studied in literature...

Mathematical treatment for thermoelastic plate with a curvilinear hole in S-plane

Alaa A. El-Bary (2006)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

The Cauchy integral method has been applied to derive exact and closed expressions for Goursat's functions for the first and second fundamental problems for an infinite thermoelastic plate weakened by a hole having arbitrary shape. The plate considered is conformally mapped to the area of the right half-plane. Many previous discussions of various authors can be considered as special cases of this work. The shape of the hole being an ellipse, a crescent, a triangle, or a cut having the shape of a...

Modeling of vibration for functionally graded beams

Gülsemay Yiğit, Ali Şahin, Mustafa Bayram (2016)

Open Mathematics

In this study, a vibration problem of Euler-Bernoulli beam manufactured with Functionally Graded Material (FGM), which is modelled by fourth-order partial differential equations with variable coefficients, is examined by using the Adomian Decomposition Method (ADM).The method is one of the useful and powerful methods which can be easily applied to linear and nonlinear initial and boundary value problems. As to functionally graded materials, they are composites mixed by two or more materials at a...

Currently displaying 1 – 20 of 25

Page 1 Next