Displaying 201 – 220 of 684

Showing per page

Existence and non-existence of global solutions for nonlinear hyperbolic equations of higher order

Guo Wang Chen, Shu Bin Wang (1995)

Commentationes Mathematicae Universitatis Carolinae

The existence and uniqueness of classical global solution and blow up of non-global solution to the first boundary value problem and the second boundary value problem for the equation u t t - α u x x - β u x x t t = ϕ ( u x ) x are proved. Finally, the results of the above problem are applied to the equation arising from nonlinear waves in elastic rods u t t - a 0 + n a 1 ( u x ) n - 1 u x x - a 2 u x x t t = 0 .

Existence of a solution for a nonlinearly elastic plane membrane “under tension”

Daniel Coutand (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A justification of the two-dimensional nonlinear “membrane” equations for a plate made of a Saint Venant-Kirchhoff material has been given by Fox et al. [9] by means of the method of formal asymptotic expansions applied to the three-dimensional equations of nonlinear elasticity. This model, which retains the material-frame indifference of the original three dimensional problem in the sense that its energy density is invariant under the rotations of 3 , is equivalent to finding the critical points...

Exponential stability of a flexible structure with history and thermal effect

Roberto Díaz, Jaime Muñoz, Carlos Martínez, Octavio Vera (2020)

Applications of Mathematics

In this paper we study the asymptotic behavior of a system composed of an integro-partial differential equation that models the longitudinal oscillation of a beam with a memory effect to which a thermal effect has been given by the Green-Naghdi model type III, being physically more accurate than the Fourier and Cattaneo models. To achieve this goal, we will use arguments from spectral theory, considering a suitable hypothesis of smoothness on the integro-partial differential equation.

External approximation of first order variational problems via W-1,p estimates

Cesare Davini, Roberto Paroni (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Here we present an approximation method for a rather broad class of first order variational problems in spaces of piece-wise constant functions over triangulations of the base domain. The convergence of the method is based on an inequality involving W - 1 , p norms obtained by Nečas and on the general framework of Γ-convergence theory.

Currently displaying 201 – 220 of 684