The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 521 –
540 of
585
We verify functional a posteriori error estimates proposed by S. Repin for a class of obstacle problems in two space dimensions. New benchmarks with known analytical solution are constructed based on one dimensional benchmark introduced by P. Harasim and J. Valdman. Numerical approximation of the solution of the obstacle problem is obtained by the finite element method using bilinear elements on a rectangular mesh. Error of the approximation is measured by a functional majorant. The majorant value...
We consider mathematical models describing dynamics of an elastic beam which is clamped at its left end to a vibrating support and which can move freely at its right end between two rigid obstacles. We model the contact with Signorini's complementary conditions between the displacement and the shear stress. For this infinite dimensional contact problem, we propose a family of fully discretized approximations and their convergence is proved. Moreover some examples of implementation are presented....
Solvability of the general boundary value problem for von Kármán system of nonlinear equations is studied. The problem is reduced to an operator equation. It is shown that the corresponding functional of energy is coercive and weakly lower semicontinuous. Then the functional of energy attains absolute minimum which is a variational solution of the problem.
We investigate a generalized class of fractional hemivariational inequalities involving the time-fractional aspect. The existence result is established by employing the Rothe method in conjunction with the surjectivity of multivalued pseudomonotone operators and the properties of the Clarke generalized gradient. We are also exploring a numerical approach to address the problem, utilizing both spatially semi-discrete and fully discrete finite elements, along with a discrete approximation of the fractional...
Unilateral deflection problem of a clamped plate above a rigid inner obstacle is considered. The variable thickness of the plate is to be optimized to reach minimal weight under some constraints for maximal stresses. Since the constraints are expressed in terms of the bending moments only, Herrmann-Hellan finite element scheme is employed. The existence of an optimal thickness is proved and some convergence analysis for approximate penalized optimal design problem is presented.
Extending the results of the previous paper [1], the authors consider elastic bodies with two design variables, i.e. "curved trapezoids" with two curved variable sides. The left side is loaded by a hydrostatic pressure. Approximations of the boundary are defined by cubic Hermite splines and piecewise linear finite elements are used for the displacements. Both existence and some convergence analysis is presented for approximate penalized optimal design problems.
Shape optimization of a two-dimensional elastic body is considered, provided the material is weakly supporting tension. The problem generalizes that of a masonry dam subjected to its own weight and to the hydrostatic presure. Existence of an optimal shape is proved. Using a penalty method and finite element technique, approximate solutions are proposed and their convergence is analyzed.
Microstructures in phase-transitions of alloys are modeled by the energy minimization of a nonconvex energy density . Their time-evolution leads to a nonlinear wave equation with the non-monotone stress-strain relation plus proper boundary and initial conditions. This hyperbolic-elliptic initial-boundary value problem of changing types allows, in general, solely Young-measure solutions. This paper introduces a fully-numerical time-space discretization of this equation in a corresponding very...
Microstructures in phase-transitions of alloys are modeled by the
energy minimization of a nonconvex energy density ϕ. Their
time-evolution leads to a nonlinear wave equation
with the non-monotone stress-strain relation
plus proper boundary and initial conditions. This hyperbolic-elliptic
initial-boundary value problem of changing types allows, in general,
solely Young-measure solutions. This paper introduces a
fully-numerical time-space discretization of this equation in a
corresponding...
Currently displaying 521 –
540 of
585