Page 1 Next

Displaying 1 – 20 of 27

Showing per page

FER/SubDomain : an integrated environment for finite element analysis using object-oriented approach

Zhi-Qiang Feng, Jean-Michel Cros (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Development of user-friendly and flexible scientific programs is a key to their usage, extension and maintenance. This paper presents an OOP (Object-Oriented Programming) approach for design of finite element analysis programs. General organization of the developed software system, called FER/SubDomain, is given which includes the solver and the pre/post processors with a friendly GUI (Graphical User Interfaces). A case study with graphical representations illustrates some functionalities of the...

FER/SubDomain: An Integrated Environment for Finite Element Analysis using Object-Oriented Approach

Zhi-Qiang Feng, Jean-Michel Cros (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Development of user-friendly and flexible scientific programs is a key to their usage, extension and maintenance. This paper presents an OOP (Object-Oriented Programming) approach for design of finite element analysis programs. General organization of the developed software system, called FER/SubDomain, is given which includes the solver and the pre/post processors with a friendly GUI (Graphical User Interfaces). A case study with graphical representations illustrates some functionalities of the...

FETI-DP domain decomposition methods for elasticity with structural changes: P-elasticity

Axel Klawonn, Patrizio Neff, Oliver Rheinbach, Stefanie Vanis (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider linear elliptic systems which arise in coupled elastic continuum mechanical models. In these systems, the strain tensor εP := sym (P-1∇u) is redefined to include a matrix valued inhomogeneity P(x) which cannot be described by a space dependent fourth order elasticity tensor. Such systems arise naturally in geometrically exact plasticity or in problems with eigenstresses. The tensor field P induces a structural change of the elasticity equations. For such a model the FETI-DP method is...

FETI-DP domain decomposition methods for elasticity with structural changes: P-elasticity

Axel Klawonn, Patrizio Neff, Oliver Rheinbach, Stefanie Vanis (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider linear elliptic systems which arise in coupled elastic continuum mechanical models. In these systems, the strain tensor εP := sym (P-1∇u) is redefined to include a matrix valued inhomogeneity P(x) which cannot be described by a space dependent fourth order elasticity tensor. Such systems arise naturally in geometrically exact plasticity or in problems with eigenstresses. The tensor field P induces a structural change of the elasticity equations. For such a model the FETI-DP method is...

Finite difference scheme for the Willmore flow of graphs

Tomáš Oberhuber (2007)

Kybernetika

In this article we discuss numerical scheme for the approximation of the Willmore flow of graphs. The scheme is based on the finite difference method. We improve the scheme we presented in Oberhuber [Obe-2005-2,Obe-2005-1] which is based on combination of the forward and the backward finite differences. The new scheme approximates the Willmore flow by the central differences and as a result it better preserves symmetry of the solution. Since it requires higher regularity of the solution, additional...

Finite element analysis of a static contact problem with Coulomb friction

Ivan Hlaváček (2000)

Applications of Mathematics

A unilateral contact problem with a variable coefficient of friction is solved by a simplest variant of the finite element technique. The coefficient of friction may depend on the magnitude of the tangential displacement. The existence of an approximate solution and some a priori estimates are proved.

Finite element analysis of free material optimization problem

Jan Mach (2004)

Applications of Mathematics

Free material optimization solves an important problem of structural engineering, i.e. to find the stiffest structure for given loads and boundary conditions. Its mathematical formulation leads to a saddle-point problem. It can be solved numerically by the finite element method. The convergence of the finite element method can be proved if the spaces involved satisfy suitable approximation assumptions. An example of a finite-element discretization is included.

Finite element analysis of sloshing and hydroelastic vibrations under gravity

Alfredo Bermúdez, Rodolfo Rodríguez (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper deals with a finite element method to solve fluid-structure interaction problems. More precisely it concerns the numerical computation of harmonic hydroelastic vibrations under gravity. It is based on a displacement formulation for both the fluid and the solid. Gravity effects are included on the free surface of the fluid as well as on the liquid-solid interface. The pressure of the fluid is used as a variable for the theoretical analysis leading to a well posed mixed linear eigenvalue...

Finite element analysis of the Signorini problem in semi-coercive cases

Ivan Hlaváček, Ján Lovíšek (1980)

Aplikace matematiky

The plane Signorini problem is considered in the cases, when there exist non-trivial rigid admissible displacements. The existence and uniqueness of the solution and the convergence of piecewise linear finite element approximations is discussed.

Finite elements methods for solving viscoelastic thin plates

Helena Růžičková, Alexander Ženíšek (1984)

Aplikace matematiky

The present paper deals with numerical solution of a viscoelastic plate. The discrete problem is defined by C 1 -elements and a linear multistep method. The effect of numerical integration is studied as well. The rate of cnvergence is established. Some examples are given in the conclusion.

Finite volume schemes for the generalized subjective surface equation in image segmentation

Karol Mikula, Mariana Remešíková (2009)

Kybernetika

In this paper, we describe an efficient method for 3D image segmentation. The method uses a PDE model – the so called generalized subjective surface equation which is an equation of advection-diffusion type. The main goal is to develop an efficient and stable numerical method for solving this problem. The numerical solution is based on semi-implicit time discretization and flux-based level set finite volume space discretization. The space discretization is discussed in details and we introduce three...

Finite volume schemes for the p-laplacian on cartesian meshes

Boris Andreianov, Franck Boyer, Florence Hubert (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper is concerned with the finite volume approximation of the p-laplacian equation with homogeneous Dirichlet boundary conditions on rectangular meshes. A reconstruction of the norm of the gradient on the mesh’s interfaces is needed in order to discretize the p-laplacian operator. We give a detailed description of the possible nine points schemes ensuring that the solution of the resulting finite dimensional nonlinear system exists and is unique. These schemes, called admissible, are locally...

Currently displaying 1 – 20 of 27

Page 1 Next