Page 1

Displaying 1 – 6 of 6

Showing per page

Generalized Newton methods for the 2D-Signorini contact problem with friction in function space

Karl Kunisch, Georg Stadler (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The 2D-Signorini contact problem with Tresca and Coulomb friction is discussed in infinite-dimensional Hilbert spaces. First, the problem with given friction (Tresca friction) is considered. It leads to a constraint non-differentiable minimization problem. By means of the Fenchel duality theorem this problem can be transformed into a constrained minimization involving a smooth functional. A regularization technique for the dual problem motivated by augmented lagrangians allows to apply an infinite-dimensional...

Generalized Newton methods for the 2D-Signorini contact problem with friction in function space

Karl Kunisch, Georg Stadler (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The 2D-Signorini contact problem with Tresca and Coulomb friction is discussed in infinite-dimensional Hilbert spaces. First, the problem with given friction (Tresca friction) is considered. It leads to a constraint non-differentiable minimization problem. By means of the Fenchel duality theorem this problem can be transformed into a constrained minimization involving a smooth functional. A regularization technique for the dual problem motivated by augmented Lagrangians allows to apply an...

Godunov method for nonconservative hyperbolic systems

María Luz Muñoz-Ruiz, Carlos Parés (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is concerned with the numerical approximation of Cauchy problems for one-dimensional nonconservative hyperbolic systems. The theory developed by Dal Maso et al. [J. Math. Pures Appl.74 (1995) 483–548] is used in order to define the weak solutions of the system: an interpretation of the nonconservative products as Borel measures is given, based on the choice of a family of paths drawn in the phase space. Even if the family of paths can be chosen arbitrarily, it is natural to require this...

Guaranteed and computable bounds of the limit load for variational problems with linear growth energy functionals

Jaroslav Haslinger, Sergey Repin, Stanislav Sysala (2016)

Applications of Mathematics

The paper is concerned with guaranteed and computable bounds of the limit (or safety) load, which is one of the most important quantitative characteristics of mathematical models associated with linear growth functionals. We suggest a new method for getting such bounds and illustrate its performance. First, the main ideas are demonstrated with the paradigm of a simple variational problem with a linear growth functional defined on a set of scalar valued functions. Then, the method is extended to...

Currently displaying 1 – 6 of 6

Page 1