The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We study a nonlinear Neumann boundary value problem associated to a nonhomogeneous differential operator. Taking into account the competition between the nonlinearity and the bifurcation parameter, we establish sufficient conditions for the existence of nontrivial solutions in a related Orlicz–Sobolev space.
We study numerically the semiclassical limit for the nonlinear
Schrödinger equation thanks to a modification of the Madelung
transform due to Grenier. This approach allows for the presence of
vacuum. Even if the mesh
size and the time step do not depend on the
Planck constant, we recover the position and current densities in the
semiclassical limit, with a numerical rate of convergence in
accordance with the theoretical
results, before shocks appear in the limiting Euler
equation. By using simple...
We study numerically the semiclassical limit for the nonlinear
Schrödinger equation thanks to a modification of the Madelung
transform due to Grenier. This approach allows for the presence of
vacuum. Even if the mesh
size and the time step do not depend on the
Planck constant, we recover the position and current densities in the
semiclassical limit, with a numerical rate of convergence in
accordance with the theoretical
results, before shocks appear in the limiting Euler
equation. By using simple...
Currently displaying 1 –
3 of
3