Displaying 101 – 120 of 139

Showing per page

The blocking of an inhomogeneous Bingham fluid. Applications to landslides

Patrick Hild, Ioan R. Ionescu, Thomas Lachand-Robert, Ioan Roşca (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This work is concerned with the flow of a viscous plastic fluid. We choose a model of Bingham type taking into account inhomogeneous yield limit of the fluid, which is well-adapted in the description of landslides. After setting the general threedimensional problem, the blocking property is introduced. We then focus on necessary and sufficient conditions such that blocking of the fluid occurs. The anti-plane flow in twodimensional and onedimensional cases is considered. A variational formulation...

The blocking of an inhomogeneous Bingham fluid. Applications to landslides

Patrick Hild, Ioan R. Ionescu, Thomas Lachand-Robert, Ioan Roşca (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This work is concerned with the flow of a viscous plastic fluid. We choose a model of Bingham type taking into account inhomogeneous yield limit of the fluid, which is well-adapted in the description of landslides. After setting the general threedimensional problem, the blocking property is introduced. We then focus on necessary and sufficient conditions such that blocking of the fluid occurs. The anti-plane flow in twodimensional and onedimensional cases is considered. A variational formulation...

The existence of an exponential attractor in magneto-micropolar fluid flow via the ℓ-trajectories method

Piotr Orliński (2013)

Colloquium Mathematicae

We consider the magneto-micropolar fluid flow in a bounded domain Ω ⊂ ℝ². The flow is modelled by a system of PDEs, a generalisation of the two-dimensional Navier-Stokes equations. Using the Galerkin method we prove the existence and uniqueness of weak solutions and then using the ℓ-trajectories method we prove the existence of the exponential attractor in the dynamical system associated with the model.

The Mortar finite element method for Bingham fluids

Patrick Hild (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper deals with the flow problem of a viscous plastic fluid in a cylindrical pipe. In order to approximate this problem governed by a variational inequality, we apply the nonconforming mortar finite element method. By using appropriate techniques, we are able to prove the convergence of the method and to obtain the same convergence rate as in the conforming case.

The mortar finite element method for Bingham fluids

Patrick Hild (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper deals with the flow problem of a viscous plastic fluid in a cylindrical pipe. In order to approximate this problem governed by a variational inequality, we apply the nonconforming mortar finite element method. By using appropriate techniques, we are able to prove the convergence of the method and to obtain the same convergence rate as in the conforming case.

Two shallow-water type models for viscoelastic flows from kinetic theory for polymers solutions

Gladys Narbona-Reina, Didier Bresch (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this work, depending on the relation between the Deborah, the Reynolds and the aspect ratio numbers, we formally derived shallow-water type systems starting from a micro-macro description for non-Newtonian fluids in a thin domain governed by an elastic dumbbell type model with a slip boundary condition at the bottom. The result has been announced by the authors in [G. Narbona-Reina, D. Bresch, Numer. Math. and Advanced Appl. Springer Verlag (2010)] and in the present paper, we provide a self-contained...

Validation of numerical simulations of a simple immersed boundary solver for fluid flow in branching channels

Keslerová, Radka, Lancmanová, Anna, Bodnár, Tomáš (2023)

Programs and Algorithms of Numerical Mathematics

This work deals with the flow of incompressible viscous fluids in a two-dimensional branching channel. Using the immersed boundary method, a new finite difference solver was developed to interpret the channel geometry. The numerical results obtained by this new solver are compared with the numerical simulations of the older finite volume method code and with the results obtained with OpenFOAM. The aim of this work is to verify whether the immersed boundary method is suitable for fluid flow in channels...

Weak and classical solutions of equations of motion for third grade fluids

Jean Marie Bernard (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper shows that the decomposition method with special basis, introduced by Cioranescu and Ouazar, allows one to prove global existence in time of the weak solution for the third grade fluids, in three dimensions, with small data. Contrary to the special case where | α 1 + α 2 | ( 24 ν β ) 1 / 2 , studied by Amrouche and Cioranescu, the H1 norm of the velocity is not bounded for all data. This fact, which led others to think, in contradiction to this paper, that the method of decomposition could not apply to...

Well-posedness for a class of non-Newtonian fluids with general growth conditions

Piotr Gwiazda, Agnieszka Świerczewska-Gwiazda, Aneta Wróblewska, Andrzej Warzyński (2009)

Banach Center Publications

The paper concerns uniqueness of weak solutions to non-Newtonian fluids with nonstandard growth conditions for the Cauchy stress tensor. We recall the results on existence of weak solutions and additionally provide the proof of existence of measure-valued solutions. Motivated by the fluids of strongly inhomogeneous behaviour and having the property of rapid shear thickening we observe that the described situation cannot be captured by power-law-type rheology. We describe the growth conditions with...

Currently displaying 101 – 120 of 139