Regularity for doubly nonlinear parabolic equations
The solution of the equations which govern the slow motions (for which the inertia forces are negligible) in an elastic sphere is studied for a great variety of rheological models and surface tractions with rotational symmetry (Caputo 1984a). The solution is expressed in terms of spherical harmonics and it is shown that its time dependent component is dependent on the order of the harmonic. The dependence of the time component of the solution on the order of the harmonic number is studied. The problem...