Page 1

Displaying 1 – 9 of 9

Showing per page

Generalized lubrification models blow-up and global existence result.

J. Emile Rakotoson, J. Michel Rakotoson, Cédric Verbeke (2005)

RACSAM

We study a general mathematical model linked with various physical models. Especially, we focus on those models established by King or Spencer-Davis-Voorhees related to thin films extending the lubrication model studied by Bernis-Friedman. According to the initial data, we prove that, either, blow up or global existence can be obtained.

Geometrodynamics of some non-relativistic incompressible fluids.

Agostino Pràstaro (1979)

Stochastica

In some previous papers [1, 2] we proposed a geometric formulation of continuum mechanics, where a continuous body is seen as a suitable differentiable fiber bundle C on the Galilean space-time M, beside a differential equation of order k, Ek(C), on C and the assignement of a frame Psi on M. This approach allowed us to treat continuum mechanics as a unitary field theory and to consider constitutive and dynamical properties in a more natural way. Further, the particular intrinsic geometrical framework...

Global Attractor for a Fourth-Order Parabolic Equation Modeling Epitaxial Thin Film Growth

Ning Duan, Xiaopeng Zhao (2012)

Bulletin of the Polish Academy of Sciences. Mathematics

This paper is concerned with a fourth-order parabolic equation which models epitaxial growth of nanoscale thin films. Based on the regularity estimates for semigroups and the classical existence theorem of global attractors, we prove that the fourth order parabolic equation possesses a global attractor in a subspace of H², which attracts all the bounded sets of H² in the H²-norm.

Global existence of strong solutions to the one-dimensional full model for phase transitions in thermoviscoelastic materials

Elisabetta Rocca, Riccarda Rossi (2008)

Applications of Mathematics

This paper is devoted to the analysis of a one-dimensional model for phase transition phenomena in thermoviscoelastic materials. The corresponding parabolic-hyperbolic PDE system features a strongly nonlinear internal energy balance equation, governing the evolution of the absolute temperature ϑ , an evolution equation for the phase change parameter χ , including constraints on the phase variable, and a hyperbolic stress-strain relation for the displacement variable 𝐮 . The main novelty of the model...

Currently displaying 1 – 9 of 9

Page 1