On the regularity for solutions of the micropolar fluid equations
We derive various estimates for strong solutions to the Navier-Stokes equations in C([0,T),L3(R3)) that allow us to prove some regularity results on the kinematic bilinear term.
In these notes we give some examples of the interaction of mathematics with experiments and numerical simulations on the search for singularities.
We study solutions of the steady Navier-Stokes equations in a bounded 2D domain with the slip boundary conditions admitting flow across the boundary. We show conditions guaranteeing uniqueness of the solution. Next, we examine the structure of the solution considering an approximation given by a natural linearization. Suitable error estimates are also obtained.
Viscous two-fluid flows arise in different kinds of coating technologies. Frequently, the corresponding mathematical models represent two-dimensional free boundary value problems for the Navier-Stokes equations or their modifications. In this review article we present some results about nonisothermal stationary as well as about isothermal evolutionary viscous flow problems. The temperature-depending problems are characterized by coupled heat- and mass transfer and also by thermocapillary convection....
We consider the non-stationary Navier-Stokes equations completed by the equation of conservation of internal energy. The viscosity of the fluid is assumed to depend on the temperature, and the dissipation term is the only heat source in the conservation of internal energy. For the system of PDE's under consideration, we prove the existence of a weak solution such that: 1) the weak form of the conservation of internal energy involves a defect measure, and 2) the equality for the total energy is satisfied....