Displaying 21 – 40 of 106

Showing per page

Smoothness properties of solutions to the nonlinear Stokes problem with nonautonomous potentials

Dominic Breit (2013)

Commentationes Mathematicae Universitatis Carolinae

We discuss regularity results concerning local minimizers u : n Ω n of variational integrals like Ω { F ( · , ε ( w ) ) - f · w } d x defined on energy classes of solenoidal fields. For the potential F we assume a ( p , q ) -elliptic growth condition. In the situation without x -dependence it is known that minimizers are of class C 1 , α on an open subset Ω 0 of Ω with full measure if q < p n + 2 n (for n = 2 we have Ω 0 = Ω ). In this article we extend this to the case of nonautonomous integrands. Of course our result extends to weak solutions of the corresponding nonlinear...

Solitary Structures Sustained by Marangoni Flow

L.M. Pismen (2010)

Mathematical Modelling of Natural Phenomena

We construct interfacial solitary structures (spots) generated by a bistable chemical reaction or a non-equilibrium phase transition in a surfactant film. The structures are stabilized by Marangoni flow that prevents the spread of a state with a higher surface tension when it is dynamically favorable. In a system without surfactant mass conservation, a unique radius of a solitary spot exists within a certain range of values of the Marangoni number...

Solutions des équations de Navier-Stokes incompressibles dans un domaine exterieur.

Nicolas Depauw (2001)

Revista Matemática Iberoamericana

Nous exposons dans cet article l'analogue de ces résultats d'existence pour l'équation de Navier-Stokes [Cannone (4), Cannone et Planchon (27, 5, 28)], mais sur un domaine extérieur Ωε, complémentaire d'un compact à bord lisse. Les deux difficultés nouvelles qui se présentent sont l'absence d'une représentation explicite en Fourier du semi-groupe associé à l'opérateur de Stokes et la nécessité de transposer la notion d'espace de Besov homogène.

Solutions faibles pour des problèmes d’interaction fluide-structure

Benoît Desjardins, Maria J. Esteban (1999/2000)

Séminaire Équations aux dérivées partielles

Nous présentons dans cette note une nouvelle façon d’aborder les questions d’existence de solutions faibles pour certains problèmes d’interaction fluide-structure. Dans l’état actuel, cette approche permet de traiter le cas de solides rigides ou très faiblement déformables, immergés dans un fluide visqueux incompressible ou dans un fluide visqueux compressible dont l’évolution est isentropique.

Solvability of the stationary Stokes system in spaces H ² - μ , μ ∈ (0,1)

Ewa Zadrzyńska, Wojciech M. Zajączkowski (2010)

Applicationes Mathematicae

We consider the stationary Stokes system with slip boundary conditions in a bounded domain. Assuming that data functions belong to weighted Sobolev spaces with weights equal to some power of the distance to some distinguished axis, we prove the existence of solutions to the problem in appropriate weighted Sobolev spaces.

Solvability of two stationary free boundary problems for the Navier-Stokes equations

V. A. Solonnikov (1998)

Bollettino dell'Unione Matematica Italiana

Si studiano due problemi con frontiera libera per equazioni stazionarie di Navier-Stokes: il problema del movimento di un liquido viscoso incomprimibile generato dalla rotazione di una sbarra rigida immersa nel liquido con velocità angolare assegnata e il problema della fuoriuscita di un liquido da un tubo circolare nello spazio libero. Si assegna l'angolo di contatto tra la frontiera libera e la superficie del tubo e, nel secondo problema, il flusso totale del liquido attraverso l'apertura del...

Some application of the implicit function theorem to the stationary Navier-Stokes equations

Konstanty Holly (1991)

Annales Polonici Mathematici

We prove that - in the case of typical external forces - the set of stationary solutions of the Navier-Stokes equations is the limit of the (full) sequence of sets of solutions of the appropriate Galerkin equations, in the sense of the Hausdorff metric (for every inner approximation of the space of velocities). Then the uniqueness of the N-S equations is equivalent to the uniqueness of almost every of these Galerkin equations.

Currently displaying 21 – 40 of 106