On variational formulations for the Stokes equations with nonstandard boundary conditions
Viscous two-fluid flows arise in different kinds of coating technologies. Frequently, the corresponding mathematical models represent two-dimensional free boundary value problems for the Navier-Stokes equations or their modifications. In this review article we present some results about nonisothermal stationary as well as about isothermal evolutionary viscous flow problems. The temperature-depending problems are characterized by coupled heat- and mass transfer and also by thermocapillary convection....
We use estimates for the inverse Laplacian of the pressure introduced by Plotnikov, Sokolowski and Frehse, Goj, Steinhauer together with the nonlinear potential theory due to Adams, Hedberg, to get a priori estimates and to prove existence of weak solutions to steady isentropic Navier-Stokes equations with the adiabatic constant for the flows powered by volume non-potential forces and with for the flows powered by potential forces and arbitrary non-volume forces. According to our knowledge,...
We consider the non-stationary Navier-Stokes equations completed by the equation of conservation of internal energy. The viscosity of the fluid is assumed to depend on the temperature, and the dissipation term is the only heat source in the conservation of internal energy. For the system of PDE's under consideration, we prove the existence of a weak solution such that: 1) the weak form of the conservation of internal energy involves a defect measure, and 2) the equality for the total energy is satisfied....
We present a numerical simulation of two coupled Navier-Stokes flows, using ope-rator-split-ting and optimization-based non-overlapping domain decomposition methods. The model problem consists of two Navier-Stokes fluids coupled, through a common interface, by a nonlinear transmission condition. Numerical experiments are carried out with two coupled fluids; one with an initial linear profile and the other in rest. As expected, the transmission condition generates a recirculation within the fluid...
This paper deals with a strongly elliptic perturbation for the Stokes equation in exterior three-dimensional domains Ω with smooth boundary. The continuity equation is substituted by the equation -ε²Δp + div u = 0, and a Neumann boundary condition for the pressure is added. Using parameter dependent Sobolev norms, for bounded domains and for sufficiently smooth data we prove convergence for the velocity part and convergence for the pressure to the solution of the Stokes problem, with δ arbitrarily...
An axisymmetric system of mould, glass piece, plunger and plunger cavity is considered. The state problem is given as a stationary head conduction process. The system includes the glass piece representing the heat source and is cooled inside the plunger cavity by flowing water and outside by the environment of the mould. The design variable is taken to be the shape of the inner surface of the plunger cavity. The cost functional is the second power of the norm in the weighted space of difference...
We consider a finite element discretization by the Taylor–Hood element for the stationary Stokes and Navier–Stokes equations with slip boundary condition. The slip boundary condition is enforced pointwise for nodal values of the velocity in boundary nodes. We prove optimal error estimates in the H1 and L2 norms for the velocity and pressure respectively.