Displaying 41 – 60 of 108

Showing per page

Influence of waves on Lagrangian acceleration in two-dimensional turbulent flows⋆⋆⋆⋆⋆⋆

Romain Nguyen van yen, Benjamin Kadoch, Vivek Kumar, Benjamin Ménétrier, Marie Farge, Kai Schneider, Diane Douady, Lionel Guez (2011)

ESAIM: Proceedings

The Lagrangian statistics in rotating Saint-Venant turbulence are studied by means of direct numerical simulation using a pseudo-spectral discretization fully resolving, both in time and space, all the inertio-gravity waves present in the system. To understand the influence of waves, three initial conditions are considered, one which is dominated by waves, one which is dominated by vortices, and one which is intermediate between these two extreme...

Mathematical analysis of a spectral hyperviscosity LES model for the simulation of turbulent flows

Jean-Luc Guermond, Serge Prudhomme (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper presents a model based on spectral hyperviscosity for the simulation of 3D turbulent incompressible flows. One particularity of this model is that the hyperviscosity is active only at the short velocity scales, a feature which is reminiscent of Large Eddy Simulation models. We propose a Fourier–Galerkin approximation of the perturbed Navier–Stokes equations and we show that, as the cutoff wavenumber goes to infinity, the solution of the model converges (up to subsequences) to a weak solution...

Mathematical analysis of a spectral hyperviscosity LES model for the simulation of turbulent flows

Jean-Luc Guermond, Serge Prudhomme (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper presents a model based on spectral hyperviscosity for the simulation of 3D turbulent incompressible flows. One particularity of this model is that the hyperviscosity is active only at the short velocity scales, a feature which is reminiscent of Large Eddy Simulation models. We propose a Fourier–Galerkin approximation of the perturbed Navier–Stokes equations and we show that, as the cutoff wavenumber goes to infinity, the solution of the model converges (up to subsequences) to a weak...

Mathematical and numerical analysis of an alternative well-posed two-layer turbulence model

Bijan Mohammadi, Guillaume Puigt (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this article, we wish to investigate the behavior of a two-layer k - ε turbulence model from the mathematical point of view, as this model is useful for the near-wall treatment in numerical simulations. First, we explain the difficulties inherent in the model. Then, we present a new variable θ that enables the mathematical study. Due to a problem of definition of the turbulent viscosity on the wall boundary, we consider an alternative version of the original equation. We show that some physical aspects...

Mathematical and Numerical Analysis of an Alternative Well-Posed Two-Layer Turbulence Model

Bijan Mohammadi, Guillaume Puigt (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this article, we wish to investigate the behavior of a two-layer k - ε turbulence model from the mathematical point of view, as this model is useful for the near-wall treatment in numerical simulations. First, we explain the difficulties inherent in the model. Then, we present a new variable θ that enables the mathematical study. Due to a problem of definition of the turbulent viscosity on the wall boundary, we consider an alternative version of the original equation. We show that some physical...

Microscale Complexity in the Ocean: Turbulence, Intermittency and Plankton Life

L. Seuront (2008)

Mathematical Modelling of Natural Phenomena

This contribution reviews the nonlinear stochastic properties of turbulent velocity and passive scalar intermittent fluctuations in Eulerian and Lagrangian turbulence. These properties are illustrated with original data sets of (i) velocity fluctuations collected in the field and in the laboratory, and (ii) temperature, salinity and in vivo fluorescence (a proxy of phytoplankton biomass, i.e. unicelled vegetals passively advected by turbulence) sampled from highly turbulent coastal waters. The strength...

Numerical analysis of modular regularization methods for the BDF2 time discretization of the Navier-Stokes equations

William Layton, Nathaniel Mays, Monika Neda, Catalin Trenchea (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider an uncoupled, modular regularization algorithm for approximation of the Navier-Stokes equations. The method is: Step 1.1: Advance the NSE one time step, Step 1.1: Regularize to obtain the approximation at the new time level. Previous analysis of this approach has been for specific time stepping methods in Step 1.1 and simple stabilizations in Step 1.1. In this report we extend the mathematical support for uncoupled, modular stabilization to (i) the more complex and better performing...

Numerical modelling of algebraic closure models of oceanic turbulent mixing layers

Anne-Claire Bennis, Tomas Chacón Rebollo, Macarena Gómez Mármol, Roger Lewandowski (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We introduce in this paper some elements for the mathematical and numerical analysis of algebraic turbulence models for oceanic surface mixing layers. In these models the turbulent diffusions are parameterized by means of the gradient Richardson number, that measures the balance between stabilizing buoyancy forces and destabilizing shearing forces. We analyze the existence and linear exponential asymptotic stability of continuous and discrete equilibria states. We also analyze the well-posedness...

On Bardina and Approximate Deconvolution Models

Roger Lewandowski (2011/2012)

Séminaire Laurent Schwartz — EDP et applications

We first outline the procedure of averaging the incompressible Navier-Stokes equations when the flow is turbulent for various type of filters. We introduce the turbulence model called Bardina’s model, for which we are able to prove existence and uniqueness of a distributional solution. In order to reconstruct some of the flow frequencies that are underestimated by Bardina’s model, we next introduce the approximate deconvolution model (ADM). We prove existence and uniqueness of a “regular weak solution”...

On evolutionary Navier-Stokes-Fourier type systems in three spatial dimensions

Miroslav Bulíček, Roger Lewandowski, Josef Málek (2011)

Commentationes Mathematicae Universitatis Carolinae

In this paper, we establish the large-data and long-time existence of a suitable weak solution to an initial and boundary value problem driven by a system of partial differential equations consisting of the Navier-Stokes equations with the viscosity ν polynomially increasing with a scalar quantity k that evolves according to an evolutionary convection diffusion equation with the right hand side ν ( k ) | 𝖣 ( v ) | 2 that is merely L 1 -integrable over space and time. We also formulate a conjecture concerning regularity...

On Large Eddy Simulation and Variational Multiscale Methods in the numerical simulation of turbulent incompressible flows

Volker John (2006)

Applications of Mathematics

Numerical simulation of turbulent flows is one of the great challenges in Computational Fluid Dynamics (CFD). In general, Direct Numerical Simulation (DNS) is not feasible due to limited computer resources (performance and memory), and the use of a turbulence model becomes necessary. The paper will discuss several aspects of two approaches of turbulent modeling—Large Eddy Simulation (LES) and Variational Multiscale (VMS) models. Topics which will be addressed are the detailed derivation of these...

Currently displaying 41 – 60 of 108