Displaying 81 – 100 of 117

Showing per page

Operator-splitting and Lagrange multiplier domain decomposition methods for numerical simulation of two coupled Navier-Stokes fluids

Didier Bresch, Jonas Koko (2006)

International Journal of Applied Mathematics and Computer Science

We present a numerical simulation of two coupled Navier-Stokes flows, using ope-rator-split-ting and optimization-based non-overlapping domain decomposition methods. The model problem consists of two Navier-Stokes fluids coupled, through a common interface, by a nonlinear transmission condition. Numerical experiments are carried out with two coupled fluids; one with an initial linear profile and the other in rest. As expected, the transmission condition generates a recirculation within the fluid...

Path following methods for steady laminar Bingham flow in cylindrical pipes

Juan Carlos De Los Reyes, Sergio González (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper is devoted to the numerical solution of stationary laminar Bingham fluids by path-following methods. By using duality theory, a system that characterizes the solution of the original problem is derived. Since this system is ill-posed, a family of regularized problems is obtained and the convergence of the regularized solutions to the original one is proved. For the update of the regularization parameter, a path-following method is investigated. Based on the differentiability properties...

Path following methods for steady laminar Bingham flow in cylindrical pipes

Juan Carlos De Los Reyes, Sergio González (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is devoted to the numerical solution of stationary laminar Bingham fluids by path-following methods. By using duality theory, a system that characterizes the solution of the original problem is derived. Since this system is ill-posed, a family of regularized problems is obtained and the convergence of the regularized solutions to the original one is proved. For the update of the regularization parameter, a path-following method is investigated. Based on the differentiability properties...

Prediction-correction legendre spectral scheme for incompressible fluid flow

He Li-ping, Mao De-kang, Guo Ben-yu (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The initial-boundary value problem of two-dimensional incompressible fluid flow in stream function form is considered. A prediction-correction Legendre spectral scheme is proposed, which is easy to be performed. The numerical solution possesses the accuracy of second-order in time and higher order in space. The numerical experiments show the high accuracy of this approach.

Propagation of chaos for the 2D viscous vortex model

Nicolas Fournier, Maxime Hauray, Stéphane Mischler (2014)

Journal of the European Mathematical Society

We consider a stochastic system of N particles, usually called vortices in that setting, approximating the 2D Navier-Stokes equation written in vorticity. Assuming that the initial distribution of the position and circulation of the vortices has finite (partial) entropy and a finite moment of positive order, we show that the empirical measure of the particle system converges in law to the unique (under suitable a priori estimates) solution of the 2D Navier-Stokes equation. We actually prove a slightly...

Solution of contaminant transport with adsorption in porous media by the method of characteristics

Jozef Kacur, Roger Van Keer (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A new approximation scheme is presented for the mathematical model of convection-diffusion and adsorption. The method is based on the relaxation method and the method of characteristics. We prove the convergence of the method and present some numerical experiments in 1D. The results can be applied to the model of contaminant transport in porous media with multi-site, equilibrium and non-equilibrium type of adsorption.

Solution of contaminant transport with adsorption in porous media by the method of characteristics

Jozef Kacur, Roger Van Keer (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A new approximation scheme is presented for the mathematical model of convection-diffusion and adsorption. The method is based on the relaxation method and the method of characteristics. We prove the convergence of the method and present some numerical experiments in 1D. The results can be applied to the model of contaminant transport in porous media with multi-site, equilibrium and non-equilibrium type of adsorption.

Solving the Vlasov equation in complex geometries

J. Abiteboul, G. Latu, V. Grandgirard, A. Ratnani, E. Sonnendrücker, A. Strugarek (2011)

ESAIM: Proceedings

This paper introduces an isoparametric analysis to solve the Vlasov equation with a semi-Lagrangian scheme. A Vlasov-Poisson problem modeling a heavy ion beam in an axisymmetric configuration is considered. Numerical experiments are conducted on computational meshes targeting different geometries. The impact of the computational grid on the accuracy and the computational cost are shown. The use of analytical mapping or Bézier patches does not induce...

Stability and consistency of the semi-implicit co-volume scheme for regularized mean curvature flow equation in level set formulation

Angela Handlovičová, Karol Mikula (2008)

Applications of Mathematics

We show stability and consistency of the linear semi-implicit complementary volume numerical scheme for solving the regularized, in the sense of Evans and Spruck, mean curvature flow equation in the level set formulation. The numerical method is based on the finite volume methodology using the so-called complementary volumes to a finite element triangulation. The scheme gives the solution in an efficient and unconditionally stable way.

Stability for a certain class of numerical methods – abstract approach and application to the stationary Navier-Stokes equations

Elżbieta Motyl (2012)

Annales de la faculté des sciences de Toulouse Mathématiques

We consider some abstract nonlinear equations in a separable Hilbert space H and some class of approximate equations on closed linear subspaces of H . The main result concerns stability with respect to the approximation of the space H . We prove that, generically, the set of all solutions of the exact equation is the limit in the sense of the Hausdorff metric over H of the sets of approximate solutions, over some filterbase on the family of all closed linear subspaces of H . The abstract results are...

Currently displaying 81 – 100 of 117