Displaying 221 – 240 of 797

Showing per page

Conservative numerical methods for a two-temperature resistive MHD model with self-generated magnetic field term

Marc Wolff, Stéphane Jaouen, Lise-Marie Imbert-Gérard (2011)

ESAIM: Proceedings

We propose numerical methods on Cartesian meshes for solving the 2-D axisymmetric two-temperature resistivive magnetohydrodynamics equations with self-generated magnetic field and Braginskii’s [1] closures. These rely on a splitting of the complete system in several subsystems according to the nature of the underlying mathematical operator. The hyperbolic part is solved using conservative high-order dimensionally split Lagrange-remap schemes whereas...

Constraint preserving schemes using potential-based fluxes. III. Genuinely multi-dimensional schemes for MHD equations∗∗∗

Siddhartha Mishra, Eitan Tadmor (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We design efficient numerical schemes for approximating the MHD equations in multi-dimensions. Numerical approximations must be able to deal with the complex wave structure of the MHD equations and the divergence constraint. We propose schemes based on the genuinely multi-dimensional (GMD) framework of [S. Mishra and E. Tadmor, Commun. Comput. Phys. 9 (2010) 688–710; S. Mishra and E. Tadmor, SIAM J. Numer. Anal. 49 (2011) 1023–1045]. The schemes are formulated in terms of vertex-centered potentials....

Constraint preserving schemes using potential-based fluxes. III. Genuinely multi-dimensional schemes for MHD equations∗∗∗

Siddhartha Mishra, Eitan Tadmor (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We design efficient numerical schemes for approximating the MHD equations in multi-dimensions. Numerical approximations must be able to deal with the complex wave structure of the MHD equations and the divergence constraint. We propose schemes based on the genuinely multi-dimensional (GMD) framework of [S. Mishra and E. Tadmor, Commun. Comput. Phys. 9 (2010) 688–710; S. Mishra and E. Tadmor, SIAM J. Numer. Anal. 49 (2011) 1023–1045]. The schemes are formulated in terms of vertex-centered potentials....

Contaminant transport with adsorption in dual-well flow

Jozef Kačur, Roger Van Keer (2003)

Applications of Mathematics

Numerical approximation schemes are discussed for the solution of contaminant transport with adsorption in dual-well flow. The method is based on time stepping and operator splitting for the transport with adsorption and diffusion. The nonlinear transport is solved by Godunov’s method. The nonlinear diffusion is solved by a finite volume method and by Newton’s type of linearization. The efficiency of the method is discussed.

Continuous-time finite element analysis of multiphase flow in groundwater hydrology

Zhangxin Chen, Magne Espedal, Richard E. Ewing (1995)

Applications of Mathematics

A nonlinear differential system for describing an air-water system in groundwater hydrology is given. The system is written in a fractional flow formulation, i.e., in terms of a saturation and a global pressure. A continuous-time version of the finite element method is developed and analyzed for the approximation of the saturation and pressure. The saturation equation is treated by a Galerkin finite element method, while the pressure equation is treated by a mixed finite element method. The analysis...

Contrôle par les coefficients dans le modèle Elrod-Adams

Mohamed El Alaoui Talibi, Abdellah El Kacimi (2001)

ESAIM: Control, Optimisation and Calculus of Variations

Dans ce papier, nous étudions un problème de contrôle par les coefficients issu de la lubrification élastohydrodynamique. La variable de contrôle est l’épaisseur du fluide. Le phénomène de cavitation est pris en compte par le modèle Elrod-Adams, connu pour ses performances dans la conservation des débits d’entrée et de sortie. L’idée est de régulariser dans l’équation d’état le graphe d’Heaviside, en l’approchant par une suite de fonctions monotones et régulières. Nous dérivons les conditions d’optimalité...

Contrôle par les coefficients dans le modèle elrod-adams

Mohamed El Alaoui Talibi, Abdellah El Kacimi (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The purpose of this paper is to study a control by coefficients problem issued from the elastohydrodynamic lubrication. The control variable is the film thickness.The cavitation phenomenon takes place and described by the Elrod-Adams model, suggested in preference to the classical variational inequality due to its ability to describe input and output flow. The idea is to use the penalization in the state equation  by approximating the Heaviside graph whith a sequence of monotone and regular functions....

Controllability of three-dimensional Navier–Stokes equations and applications

Armen Shirikyan (2005/2006)

Séminaire Équations aux dérivées partielles

We formulate two results on controllability properties of the 3D Navier–Stokes (NS) system. They concern the approximate controllability and exact controllability in finite-dimensional projections of the problem in question. As a consequence, we obtain the existence of a strong solution of the Cauchy problem for the 3D NS system with an arbitrary initial function and a large class of right-hand sides. We also discuss some qualitative properties of admissible weak solutions for randomly forced NS...

Convergence analysis of a locally stabilized collocated finite volume scheme for incompressible flows

Robert Eymard, Raphaèle Herbin, Jean-Claude Latché, Bruno Piar (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

We present and analyse in this paper a novel cell-centered collocated finite volume scheme for incompressible flows. Its definition involves a partition of the set of control volumes; each element of this partition is called a cluster and consists in a few neighbouring control volumes. Under a simple geometrical assumption for the clusters, we obtain that the pair of discrete spaces associating the classical cell-centered approximation for the velocities and cluster-wide constant pressures is inf-sup...

Convergence of a finite element discretization of the Navier-Stokes equations in vorticity and stream function formulation

Mohamed Amara, Christine Bernardi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The standard discretization of the Stokes and Navier–Stokes equations in vorticity and stream function formulation by affine finite elements is known for its bad convergence. We present here a modified discretization, we prove that the convergence is improved and we establish a priori error estimates.

Convergence of a Lagrange-Galerkin method for a fluid-rigid body system in ALE formulation

Guillaume Legendre, Takéo Takahashi (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose a numerical scheme to compute the motion of a two-dimensional rigid body in a viscous fluid. Our method combines the method of characteristics with a finite element approximation to solve an ALE formulation of the problem. We derive error estimates implying the convergence of the scheme.

Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients

Kenneth Hvistendahl Karlsen, Nils Henrik Risebro (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider the initial value problem for degenerate viscous and inviscid scalar conservation laws where the flux function depends on the spatial location through a “rough” coefficient function k ( x ) . We show that the Engquist-Osher (and hence all monotone) finite difference approximations converge to the unique entropy solution of the governing equation if, among other demands, k ' is in B V , thereby providing alternative (new) existence proofs for entropy solutions of degenerate convection-diffusion equations...

Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients

Kenneth Hvistendahl Karlsen, Nils Henrik Risebro (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the initial value problem for degenerate viscous and inviscid scalar conservation laws where the flux function depends on the spatial location through a "rough"coefficient function k(x). We show that the Engquist-Osher (and hence all monotone) finite difference approximations converge to the unique entropy solution of the governing equation if, among other demands, k' is in BV, thereby providing alternative (new) existence proofs for entropy solutions of degenerate convection-diffusion...

Convergence of implicit Finite Volume methods for scalar conservation laws with discontinuous flux function

Sébastien Martin, Julien Vovelle (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper deals with the problem of numerical approximation in the Cauchy-Dirichlet problem for a scalar conservation law with a flux function having finitely many discontinuities. The well-posedness of this problem was proved by Carrillo [J. Evol. Eq. 3 (2003) 687–705]. Classical numerical methods do not allow us to compute a numerical solution (due to the lack of regularity of the flux). Therefore, we propose an implicit Finite Volume method based on an equivalent formulation of the initial...

Convergence of locally divergence-free discontinuous-Galerkin methods for the induction equations of the 2D-MHD system

Nicolas Besse, Dietmar Kröner (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present the convergence analysis of locally divergence-free discontinuous Galerkin methods for the induction equations which appear in the ideal magnetohydrodynamic system. When we use a second order Runge Kutta time discretization, under the CFL condition Δ t h 4 / 3 , we obtain error estimates in L 2 of order 𝒪 ( Δ t 2 + h m + 1 / 2 ) where m is the degree of the local polynomials.

Convergence of locally divergence-free discontinuous-Galerkin methods for the induction equations of the 2D-MHD system

Nicolas Besse, Dietmar Kröner (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present the convergence analysis of locally divergence-free discontinuous Galerkin methods for the induction equations which appear in the ideal magnetohydrodynamic system. When we use a second order Runge Kutta time discretization, under the CFL condition Δ t h 4 / 3 , we obtain error estimates in L2 of order 𝒪 ( Δ t 2 + h m + 1 / 2 ) where m is the degree of the local polynomials.

Currently displaying 221 – 240 of 797