Displaying 321 – 340 of 797

Showing per page

Finite volume scheme for two-phase flows in heterogeneous porous media involving capillary pressure discontinuities

Clément Cancès (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

We study a one-dimensional model for two-phase flows in heterogeneous media, in which the capillary pressure functions can be discontinuous with respect to space. We first give a model, leading to a system of degenerated nonlinear parabolic equations spatially coupled by nonlinear transmission conditions. We approximate the solution of our problem thanks to a monotonous finite volume scheme. The convergence of the underlying discrete solution to a weak solution when the discretization step...

Finite volume schemes for multi-dimensional hyperbolic systems based on the use of bicharacteristics

Mária Lukáčová-Medviďová, Jitka Saibertová (2006)

Applications of Mathematics

In this paper we present recent results for the bicharacteristic based finite volume schemes, the so-called finite volume evolution Galerkin (FVEG) schemes. These methods were proposed to solve multi-dimensional hyperbolic conservation laws. They combine the usually conflicting design objectives of using the conservation form and following the characteristics, or bicharacteristics. This is realized by combining the finite volume formulation with approximate evolution operators, which use bicharacteristics...

Finite-element discretizations of a two-dimensional grade-two fluid model

Vivette Girault, Larkin Ridgway Scott (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We propose and analyze several finite-element schemes for solving a grade-two fluid model, with a tangential boundary condition, in a two-dimensional polygon. The exact problem is split into a generalized Stokes problem and a transport equation, in such a way that it always has a solution without restriction on the shape of the domain and on the size of the data. The first scheme uses divergence-free discrete velocities and a centered discretization of the transport term, whereas the other schemes...

Finite-element discretizations of a two-dimensional grade-two fluid model

Vivette Girault, Larkin Ridgway Scott (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose and analyze several finite-element schemes for solving a grade-two fluid model, with a tangential boundary condition, in a two-dimensional polygon. The exact problem is split into a generalized Stokes problem and a transport equation, in such a way that it always has a solution without restriction on the shape of the domain and on the size of the data. The first scheme uses divergence-free discrete velocities and a centered discretization of the transport term, whereas the other schemes...

Fluide idéal incompressible en dimension deux autour d’un obstacle fin

Christophe Lacave (2008/2009)

Séminaire Équations aux dérivées partielles

Nous étudions le comportement asymptotique des fluides incompressibles dans les domaines extérieurs, quand l’obstacle devient de plus en plus fin, tendant vers une courbe. Nous étendons les travaux d’Iftimie, Lopes Filho, Nussenzveig Lopes et Kelliher dans lesquels les auteurs considèrent des obstacles se contractant vers un point. En utilisant des outils de l’analyse complexe, nous détaillerons le cas des fluides idéaux en dimension deux autour d’une courbe. Nous donnerons ensuite, à titre indicatif,...

Fluid–particle shear flows

Bertrand Maury (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Our purpose is to estimate numerically the influence of particles on the global viscosity of fluid–particle mixtures. Particles are supposed to rigid, and the surrounding fluid is newtonian. The motion of the mixture is computed directly, i.e. all the particle motions are computed explicitly. Apparent viscosity, based on the force exerted by the fluid on the sliding walls, is computed at each time step of the simulation. In order to perform long–time simulations and still control the solid fraction,...

Fluid–particle shear flows

Bertrand Maury (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Our purpose is to estimate numerically the influence of particles on the global viscosity of fluid–particle mixtures. Particles are supposed to rigid, and the surrounding fluid is newtonian. The motion of the mixture is computed directly, i.e. all the particle motions are computed explicitly. Apparent viscosity, based on the force exerted by the fluid on the sliding walls, is computed at each time step of the simulation. In order to perform long–time simulations and still control the solid fraction,...

Free-energy-dissipative schemes for the Oldroyd-B model

Sébastien Boyaval, Tony Lelièvre, Claude Mangoubi (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

In this article, we analyze the stability of various numerical schemes for differential models of viscoelastic fluids. More precisely, we consider the prototypical Oldroyd-B model, for which a free energy dissipation holds, and we show under which assumptions such a dissipation is also satisfied for the numerical scheme. Among the numerical schemes we analyze, we consider some discretizations based on the log-formulation of the Oldroyd-B system proposed by Fattal and Kupferman in [J. Non-Newtonian...

Fully adaptive multiresolution schemes for strongly degenerate parabolic equations in one space dimension

Raimund Bürger, Ricardo Ruiz, Kai Schneider, Mauricio Sepúlveda (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a fully adaptive multiresolution scheme for spatially one-dimensional quasilinear strongly degenerate parabolic equations with zero-flux and periodic boundary conditions. The numerical scheme is based on a finite volume discretization using the Engquist-Osher numerical flux and explicit time stepping. An adaptive multiresolution scheme based on cell averages is then used to speed up the CPU time and the memory requirements of the underlying finite volume scheme, whose first-order...

Generalized Harten formalism and longitudinal variation diminishing schemes for linear advection on arbitrary grids

Bruno Després, Frédéric Lagoutière (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We study a family of non linear schemes for the numerical solution of linear advection on arbitrary grids in several space dimension. A proof of weak convergence of the family of schemes is given, based on a new Longitudinal Variation Diminishing (LVD) estimate. This estimate is a multidimensional equivalent to the well-known TVD estimate in one dimension. The proof uses a corollary of the Perron-Frobenius theorem applied to a generalized Harten formalism.

Generalized Harten Formalism and Longitudinal Variation Diminishing schemes for Linear Advection on Arbitrary Grids

Bruno Després, Frédéric Lagoutière (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We study a family of non linear schemes for the numerical solution of linear advection on arbitrary grids in several space dimension. A proof of weak convergence of the family of schemes is given, based on a new Longitudinal Variation Diminishing (LVD) estimate. This estimate is a multidimensional equivalent to the well-known TVD estimate in one dimension. The proof uses a corollary of the Perron-Frobenius theorem applied to a generalized Harten formalism.

Currently displaying 321 – 340 of 797