Displaying 361 – 380 of 797

Showing per page

Hybrid central-upwind schemes for numerical resolution of two-phase flows

Steinar Evje, Tore Flåtten (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we present a methodology for constructing accurate and efficient hybrid central-upwind (HCU) type schemes for the numerical resolution of a two-fluid model commonly used by the nuclear and petroleum industry. Particularly, we propose a method which does not make use of any information about the eigenstructure of the jacobian matrix of the model. The two-fluid model possesses a highly nonlinear pressure law. From the mass conservation equations we develop an evolution equation which...

Hybrid central-upwind schemes for numerical resolution of two-phase flows

Steinar Evje, Tore Flåtten (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we present a methodology for constructing accurate and efficient hybrid central-upwind (HCU) type schemes for the numerical resolution of a two-fluid model commonly used by the nuclear and petroleum industry. Particularly, we propose a method which does not make use of any information about the eigenstructure of the Jacobian matrix of the model. The two-fluid model possesses a highly nonlinear pressure law. From the mass conservation equations we develop an evolution equation which...

Hybrid model for the Coupling of an Asymptotic Preserving scheme with the Asymptotic Limit model: The One Dimensional Case⋆

Pierre Degond, Fabrice Deluzet, Dario Maldarella, Jacek Narski, Claudia Negulescu, Martin Parisot (2011)

ESAIM: Proceedings

In this paper a strategy is investigated for the spatial coupling of an asymptotic preserving scheme with the asymptotic limit model, associated to a singularly perturbed, highly anisotropic, elliptic problem. This coupling strategy appears to be very advantageous as compared with the numerical discretization of the initial singular perturbation model or the purely asymptotic preserving scheme introduced in previous works [3, 5]. The model problem addressed...

Hyperbolic relaxation models for granular flows

Thierry Gallouët, Philippe Helluy, Jean-Marc Hérard, Julien Nussbaum (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work we describe an efficient model for the simulation of a two-phase flow made of a gas and a granular solid. The starting point is the two-velocity two-pressure model of Baer and Nunziato [Int. J. Multiph. Flow16 (1986) 861–889]. The model is supplemented by a relaxation source term in order to take into account the pressure equilibrium between the two phases and the granular stress in the solid phase. We show that the relaxation process can be made thermodynamically coherent with an...

Impact of the variations of the mixing length in a first order turbulent closure system

Françoise Brossier, Roger Lewandowski (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper is devoted to the study of a turbulent circulation model. Equations are derived from the “Navier-Stokes turbulent kinetic energy” system. Some simplifications are performed but attention is focused on non linearities linked to turbulent eddy viscosity ν t . The mixing length acts as a parameter which controls the turbulent part in ν t . The main theoretical results that we have obtained concern the uniqueness of the solution for bounded eddy viscosities and small values of and its asymptotic...

Impact of the variations of the mixing length in a first order turbulent closure system

Françoise Brossier, Roger Lewandowski (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is devoted to the study of a turbulent circulation model. Equations are derived from the “Navier-Stokes turbulent kinetic energy” system. Some simplifications are performed but attention is focused on non linearities linked to turbulent eddy viscosity  ν t . The mixing length acts as a parameter which controls the turbulent part in ν t . The main theoretical results that we have obtained concern the uniqueness of the solution for bounded eddy viscosities and small values of and its asymptotic...

Including eigenvalues of the plane Orr-Sommerfeld problem

Peter P. Klein (1993)

Applications of Mathematics

In an earlier paper [5] a method for eigenvalue inclussion using a Gerschgorin type theory originating from Donnelly [2] was applied to the plane Orr-Sommerfeld problem in the case of a pure Poiseuile flow. In this paper the same method will be used to deal Poiseuile and Couette flow. Potter [6] has treated this case before with an approximative method.

Influence of bottom topography on long water waves

Florent Chazel (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

We focus here on the water waves problem for uneven bottoms in the long-wave regime, on an unbounded two or three-dimensional domain. In order to derive asymptotic models for this problem, we consider two different regimes of bottom topography, one for small variations in amplitude, and one for strong variations. Starting from the Zakharov formulation of this problem, we rigorously compute the asymptotic expansion of the involved Dirichlet-Neumann operator. Then, following the global strategy...

Instability of mixed finite elements for Richards' equation

Březina, Jan (2010)

Programs and Algorithms of Numerical Mathematics

Richards' equation is a widely used model of partially saturated flow in a porous medium. In order to obtain conservative velocity field several authors proposed to use mixed or mixed-hybrid schemes to solve the equation. In this paper, we shall analyze the mixed scheme on 1D domain and we show that it violates the discrete maximum principle which leads to catastrophic oscillations in the solution.

Currently displaying 361 – 380 of 797