Homogenized model for flow in partially fractured media.
In this paper we present a methodology for constructing accurate and efficient hybrid central-upwind (HCU) type schemes for the numerical resolution of a two-fluid model commonly used by the nuclear and petroleum industry. Particularly, we propose a method which does not make use of any information about the eigenstructure of the jacobian matrix of the model. The two-fluid model possesses a highly nonlinear pressure law. From the mass conservation equations we develop an evolution equation which...
In this paper we present a methodology for constructing accurate and efficient hybrid central-upwind (HCU) type schemes for the numerical resolution of a two-fluid model commonly used by the nuclear and petroleum industry. Particularly, we propose a method which does not make use of any information about the eigenstructure of the Jacobian matrix of the model. The two-fluid model possesses a highly nonlinear pressure law. From the mass conservation equations we develop an evolution equation which...
In this paper a strategy is investigated for the spatial coupling of an asymptotic preserving scheme with the asymptotic limit model, associated to a singularly perturbed, highly anisotropic, elliptic problem. This coupling strategy appears to be very advantageous as compared with the numerical discretization of the initial singular perturbation model or the purely asymptotic preserving scheme introduced in previous works [3, 5]. The model problem addressed...
In this work we describe an efficient model for the simulation of a two-phase flow made of a gas and a granular solid. The starting point is the two-velocity two-pressure model of Baer and Nunziato [Int. J. Multiph. Flow16 (1986) 861–889]. The model is supplemented by a relaxation source term in order to take into account the pressure equilibrium between the two phases and the granular stress in the solid phase. We show that the relaxation process can be made thermodynamically coherent with an...
This paper is devoted to the study of a turbulent circulation model. Equations are derived from the “Navier-Stokes turbulent kinetic energy” system. Some simplifications are performed but attention is focused on non linearities linked to turbulent eddy viscosity . The mixing length acts as a parameter which controls the turbulent part in . The main theoretical results that we have obtained concern the uniqueness of the solution for bounded eddy viscosities and small values of and its asymptotic...
This paper is devoted to the study of a turbulent circulation model. Equations are derived from the “Navier-Stokes turbulent kinetic energy” system. Some simplifications are performed but attention is focused on non linearities linked to turbulent eddy viscosity . The mixing length acts as a parameter which controls the turbulent part in . The main theoretical results that we have obtained concern the uniqueness of the solution for bounded eddy viscosities and small values of and its asymptotic...
In an earlier paper [5] a method for eigenvalue inclussion using a Gerschgorin type theory originating from Donnelly [2] was applied to the plane Orr-Sommerfeld problem in the case of a pure Poiseuile flow. In this paper the same method will be used to deal Poiseuile and Couette flow. Potter [6] has treated this case before with an approximative method.
We focus here on the water waves problem for uneven bottoms in the long-wave regime, on an unbounded two or three-dimensional domain. In order to derive asymptotic models for this problem, we consider two different regimes of bottom topography, one for small variations in amplitude, and one for strong variations. Starting from the Zakharov formulation of this problem, we rigorously compute the asymptotic expansion of the involved Dirichlet-Neumann operator. Then, following the global strategy...
Richards' equation is a widely used model of partially saturated flow in a porous medium. In order to obtain conservative velocity field several authors proposed to use mixed or mixed-hybrid schemes to solve the equation. In this paper, we shall analyze the mixed scheme on 1D domain and we show that it violates the discrete maximum principle which leads to catastrophic oscillations in the solution.