Displaying 121 – 140 of 797

Showing per page

An approximate nonlinear projection scheme for a combustion model

Christophe Berthon, Didier Reignier (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The paper deals with the numerical resolution of the convection-diffusion system which arises when modeling combustion for turbulent flow. The considered model is of compressible turbulent reacting type where the turbulence-chemistry interactions are governed by additional balance equations. The system of PDE’s, that governs such a model, turns out to be in non-conservation form and usual numerical approaches grossly fail in the capture of viscous shock layers. Put in other words, classical finite...

An approximate nonlinear projection scheme for a combustion model

Christophe Berthon, Didier Reignier (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The paper deals with the numerical resolution of the convection-diffusion system which arises when modeling combustion for turbulent flow. The considered model is of compressible turbulent reacting type where the turbulence-chemistry interactions are governed by additional balance equations. The system of PDE's, that governs such a model, turns out to be in non-conservation form and usual numerical approaches grossly fail in the capture of viscous shock layers. Put in other words, classical finite...

An asymptotic preserving scheme for P1 model using classical diffusion schemes on unstructured polygonal meshes

Emmanuel Franck, Philippe Hoch, Pierre Navaro, Gérald Samba (2011)

ESAIM: Proceedings

A new scheme for discretizing the P1 model on unstructured polygonal meshes is proposed. This scheme is designed such that its limit in the diffusion regime is the MPFA-O scheme which is proved to be a consistent variant of the Breil-Maire diffusion scheme. Numerical tests compare this scheme with a derived GLACE scheme for the P1 system.

An efficient computational framework for reduced basis approximation and a posteriori error estimation of parametrized Navier–Stokes flows

Andrea Manzoni (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present the current Reduced Basis framework for the efficient numerical approximation of parametrized steady Navier–Stokes equations. We have extended the existing setting developed in the last decade (see e.g. [S. Deparis, SIAM J. Numer. Anal. 46 (2008) 2039–2067; A. Quarteroni and G. Rozza, Numer. Methods Partial Differ. Equ. 23 (2007) 923–948; K. Veroy and A.T. Patera, Int. J. Numer. Methods Fluids 47 (2005) 773–788]) to more general affine and nonaffine parametrizations (such as volume-based...

An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment

François Bouchut, Tomás Morales de Luna (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider the system of partial differential equations governing the one-dimensional flow of two superposed immiscible layers of shallow water. The difficulty in this system comes from the coupling terms involving some derivatives of the unknowns that make the system nonconservative, and eventually nonhyperbolic. Due to these terms, a numerical scheme obtained by performing an arbitrary scheme to each layer, and using time-splitting or other similar techniques leads to instabilities in...

An entropy-correction free solver for non-homogeneous shallow water equations

Tomás Chacón Rebollo, Antonio Domínguez Delgado, Enrique D. Fernández Nieto (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this work we introduce an accurate solver for the Shallow Water Equations with source terms. This scheme does not need any kind of entropy correction to avoid instabilities near critical points. The scheme also solves the non-homogeneous case, in such a way that all equilibria are computed at least with second order accuracy. We perform several tests for relevant flows showing the performance of our scheme.

An entropy-correction free solver for non-homogeneous shallow water equations

Tomás Chacón Rebollo, Antonio Domínguez Delgado, Enrique D. Fernández Nieto (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work we introduce an accurate solver for the Shallow Water Equations with source terms. This scheme does not need any kind of entropy correction to avoid instabilities near critical points. The scheme also solves the non-homogeneous case, in such a way that all equilibria are computed at least with second order accuracy. We perform several tests for relevant flows showing the performance of our scheme.

An example in the gradient theory of phase transitions

Camillo De Lellis (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We prove by giving an example that when n 3 the asymptotic behavior of functionals Ω ε | 2 u | 2 + ( 1 - | u | 2 ) 2 / ε is quite different with respect to the planar case. In particular we show that the one-dimensional ansatz due to Aviles and Giga in the planar case (see [2]) is no longer true in higher dimensions.

An example in the gradient theory of phase transitions

Camillo De Lellis (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We prove by giving an example that when n ≥ 3 the asymptotic behavior of functionals Ω ε | 2 u | 2 + ( 1 - | u | 2 ) 2 / ε is quite different with respect to the planar case. In particular we show that the one-dimensional ansatz due to Aviles and Giga in the planar case (see [2]) is no longer true in higher dimensions.

An explicit right inverse of the divergence operator which is continuous in weighted norms

Ricardo G. Durán, Maria Amelia Muschietti (2001)

Studia Mathematica

The existence of a continuous right inverse of the divergence operator in W 1 , p ( Ω ) , 1 < p < ∞, is a well known result which is basic in the analysis of the Stokes equations. The object of this paper is to show that the continuity also holds for some weighted norms. Our results are valid for Ω ⊂ ℝⁿ a bounded domain which is star-shaped with respect to a ball B ⊂ Ω. The continuity results are obtained by using an explicit solution of the divergence equation and the classical theory of singular integrals...

An implicit scheme to solve a system of ODEs arising from the space discretization of nonlinear diffusion equations

Éric Boillat (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this article, we consider the initial value problem which is obtained after a space discretization (with space step h ) of the equations governing the solidification process of a multicomponent alloy. We propose a numerical scheme to solve numerically this initial value problem. We prove an error estimate which is not affected by the step size h chosen in the space discretization. Consequently, our scheme provides global convergence without any stability condition between h and the time step size...

An implicit scheme to solve a system of ODEs arising from the space discretization of nonlinear diffusion equations

Éric Boillat (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this article, we consider the initial value problem which is obtained after a space discretization (with space step h) of the equations governing the solidification process of a multicomponent alloy. We propose a numerical scheme to solve numerically this initial value problem. We prove an error estimate which is not affected by the step size h chosen in the space discretization. Consequently, our scheme provides global convergence without any stability condition between h and the time...

An iterative procedure to solve a coupled two-fluids turbulence model

Tomas Chacón Rebollo, Stéphane Del Pino, Driss Yakoubi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper introduces a scheme for the numerical approximation of a model for two turbulent flows with coupling at an interface. We consider the variational formulation of the coupled model, where the turbulent kinetic energy equation is formulated by transposition. We prove the convergence of the approximation to this formulation for 3D flows for large turbulent viscosities and smooth enough flows, whenever bounded in W1,p Sobolev norms for p large enough. Under the same assumptions, we...

Currently displaying 121 – 140 of 797