Displaying 161 – 180 of 188

Showing per page

Anisotropic mesh adaption: application to computational fluid dynamics

Simona Perotto (2005)

Bollettino dell'Unione Matematica Italiana

In this communication we focus on goal-oriented anisotropic adaption techniques. Starting point has been the derivation of suitable anisotropic interpolation error estimates for piecewise linear finite elements, on triangular grids in 2 D . Then we have merged these interpolation estimates with the dual-based a posteriori error analysis proposed by R. Rannacher and R. Becker. As examples of this general anisotropic a posteriori analysis, elliptic, advection-diffusion-reaction and the Stokes problems...

Application of a multiphase flow code for investigation of influence of capillary pressure parameters on two-phase flow

Jiří Mikyška, Tissa H. Illangasekare (2007)

Kybernetika

We have developed a multiphase flow code that has been applied to study the behavior of non-aqueous phase liquids (NAPL) in the subsurface. We describe model formulation, discretization, and use the model for numerical investigation of sensitivity of the NAPL plume with respect to capillary parameters of the soil. In this paper the soil is assumed to be spatially homogeneous. A 2-D reference problem has been chosen and has been recomputed repeatedly with modified parameters of the Brooks–Corey capillary...

Application of homogenization theory related to Stokes flow in porous media

Børre Bang, Dag Lukkassen (1999)

Applications of Mathematics

We consider applications, illustration and concrete numerical treatments of some homogenization results on Stokes flow in porous media. In particular, we compute the global permeability tensor corresponding to an unidirectional array of circular fibers for several volume-fractions. A 3-dimensional problem is also considered.

Application of very weak formulation on homogenization of boundary value problems in porous media

Eduard Marušić-Paloka (2021)

Czechoslovak Mathematical Journal

The goal of this paper is to present a different approach to the homogenization of the Dirichlet boundary value problem in porous medium. Unlike the standard energy method or the method of two-scale convergence, this approach is not based on the weak formulation of the problem but on the very weak formulation. To illustrate the method and its advantages we treat the stationary, incompressible Navier-Stokes system with the non-homogeneous Dirichlet boundary condition in periodic porous medium. The...

Approximation and eigenvalue extrapolation of Stokes eigenvalue problem by nonconforming finite element methods

Shanghui Jia, Hehu Xie, Xiaobo Yin, Shaoqin Gao (2009)

Applications of Mathematics

In this paper we analyze the stream function-vorticity-pressure method for the Stokes eigenvalue problem. Further, we obtain full order convergence rate of the eigenvalue approximations for the Stokes eigenvalue problem based on asymptotic error expansions for two nonconforming finite elements, Q 1 rot and E Q 1 rot . Using the technique of eigenvalue error expansion, the technique of integral identities and the extrapolation method, we can improve the accuracy of the eigenvalue approximations.

Approximation of a nonlinear elliptic problem arising in a non-newtonian fluid flow model in glaciology

Roland Glowinski, Jacques Rappaz (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The main goal of this article is to establish a priori and a posteriori error estimates for the numerical approximation of some non linear elliptic problems arising in glaciology. The stationary motion of a glacier is given by a non-newtonian fluid flow model which becomes, in a first two-dimensional approximation, the so-called infinite parallel sided slab model. The approximation of this model is made by a finite element method with piecewise polynomial functions of degree 1. Numerical results...

Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid flow model in glaciology

Roland Glowinski, Jacques Rappaz (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The main goal of this article is to establish a priori and a posteriori error estimates for the numerical approximation of some non linear elliptic problems arising in glaciology. The stationary motion of a glacier is given by a non-Newtonian fluid flow model which becomes, in a first two-dimensional approximation, the so-called infinite parallel sided slab model. The approximation of this model is made by a finite element method with piecewise polynomial functions of degree 1. Numerical results...

Approximation of an eigenvalue problem associated with the Stokes problem by the stream function-vorticity-pressure method

Wei Chen, Qun Lin (2006)

Applications of Mathematics

By means of eigenvalue error expansion and integral expansion techniques, we propose and analyze the stream function-vorticity-pressure method for the eigenvalue problem associated with the Stokes equations on the unit square. We obtain an optimal order of convergence for eigenvalues and eigenfuctions. Furthermore, for the bilinear finite element space, we derive asymptotic expansions of the eigenvalue error, an efficient extrapolation and an a posteriori error estimate for the eigenvalue. Finally,...

Asymptotic and numerical modelling of flows in fractured porous media

Philippe Angot, Franck Boyer, Florence Hubert (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

This study concerns some asymptotic models used to compute the flow outside and inside fractures in a bidimensional porous medium. The flow is governed by the Darcy law both in the fractures and in the porous matrix with large discontinuities in the permeability tensor. These fractures are supposed to have a small thickness with respect to the macroscopic length scale, so that we can asymptotically reduce them to immersed polygonal fault interfaces and the model finally consists in a coupling between...

Asymptotic behaviors of internal waves

J. Bona, D. Lannes, J.-C. Saut (2008)

Journées Équations aux dérivées partielles

We present here a systematic method of derivation of asymptotic models for internal waves, that is, for the propagation of waves at the interface of two fluids of different densities. Many physical regimes are investigated, depending on the physical parameters (depth of the fluids, amplitude and wavelength of the interface deformations). This systematic method allows us to recover the many models existing in the literature and to derive some new models, in particular in the case of large amplitude...

Currently displaying 161 – 180 of 188