Ill-posed Cauchy problems for ideal gas equations and their regularization
An exploratory study is performed to investigate the use of a time-dependent discrete adjoint methodology for design optimization of a high-lift wing configuration augmented with an active flow control system. The location and blowing parameters associated with a series of jet actuation orifices are used as design variables. In addition, a geometric parameterization scheme is developed to provide a compact set of design variables describing the wing...
The paper is concerned with the numerical solution of interaction of compressible flow and a vibrating airfoil with two degrees of freedom, which can rotate around an elastic axis and oscillate in the vertical direction. Compressible flow is described by the Navier-Stokes equations written in the ALE form. This system is discretized by the semi-implicit discontinuous Galerkin finite element method (DGFEM) and coupled with the solution of ordinary differential equations describing the airfoil motion....
This paper is concerned with numerical methods for compressible multicomponent fluids. The fluid components are assumed immiscible, and are separated by material interfaces, each endowed with its own equation of state (EOS). Cell averages of computational cells that are occupied by several fluid components require a “mixed-cell” EOS, which may not always be physically meaningful, and often leads to spurious oscillations. We present a new interface tracking...
These past few years, new types of computational architectures based on graphics processors have emerged. These technologies provide important computational resources at low cost and low energy consumption. Lots of developments have been done around GPU and many tools and libraries are now available to implement efficiently softwares on those architectures.This article contains the two contributions of the mini-symposium about GPU organized by Loïc Gouarin (Laboratoire de Mathématiques d’Orsay),...