Elastic wave propagation in fluid-saturated porous media. Part I. The existence and uniqueness theorems
The authors prove the global existence and exponential stability of solutions of the given system of equations under the condition that the initial velocities and the external forces are small and the initial density is not far from a constant one. If the external forces are periodic, then solutions periodic with the same period are obtained. The investigated system of equations is a bit non-standard - for example the displacement current in the Maxwell equations is not neglected.
We consider the flow of gas through pipelines controlled by a compressor station. Under a subsonic flow assumption we prove the existence of classical solutions for a given finite time interval. The existence result is used to construct Riemannian feedback laws and to prove a stabilization result for a coupled system of gas pipes with a compressor station. We introduce a Lyapunov function and prove exponential decay with respect to the L2-norm.
We consider the flow of gas through pipelines controlled by a compressor station. Under a subsonic flow assumption we prove the existence of classical solutions for a given finite time interval. The existence result is used to construct Riemannian feedback laws and to prove a stabilization result for a coupled system of gas pipes with a compressor station. We introduce a Lyapunov function and prove exponential decay with respect to the L2-norm.
We prove the local existence of solutions for equations of motion of a viscous compressible barotropic fluid in a domain bounded by a free surface. The solutions are shown to exist in exactly those function spaces where global solutions were found in our previous papers [14, 15].
The paper is devoted to analysis of an elliptic-algebraic system of equations describing heat explosion in a two phase medium filling a star-shaped domain. Three types of solutions are found: classical, critical and multivalued. Regularity of solutions is studied as well as their behavior depending on the size of the domain and on the coefficient of heat exchange between the two phases. Critical conditions of existence of solutions are found for arbitrary positive source function.
This work is devoted to the study of the initial boundary value problem for a general non isothermal model of capillary fluids derived by J. E Dunn and J. Serrin (1985) in [9, 16], which can be used as a phase transition model.We distinguish two cases, when the physical coefficients depend only on the density, and the general case. In the first case we can work in critical scaling spaces, and we prove global existence of solution and uniqueness for data close to a stable equilibrium. For general...