Navier-Stokes equations with nonhomogeneous boundary conditions in a convex bi-dimensional domain
We consider supersonic compressible vortex sheets for the isentropic Euler equations of gas dynamics in two space dimensions. The problem is a free boundary nonlinear hyperbolic problem with two main difficulties: the free boundary is characteristic, and the so-called Lopatinskii condition holds only in a weak sense, which yields losses of derivatives. Nevertheless, we prove the local existence of such piecewise smooth solutions to the Euler equations. Since the a priori estimates for the linearized...
The paper is devoted to the solvability of a nonlinear elliptic problem in a plane multiply connected domain. On the inner components of its boundary Dirichlet conditions are known up to additive constants which have to be determined together with the sought solution so that the so-called trailing stagnation conditions are satisfied. The results have applications in the stream function solution of subsonic flows past groups of profiles or cascades of profiles.
Our aim is to find roots of the non-unique behavior of gases which can be observed in certain axisymmetric nozzle geometries under special flow regimes. For this purpose, we use several versions of the compressible Euler equations. We show that the main reason for the non-uniqueness is hidden in the energy decomposition into its internal and kinetic parts, and their complementary behavior. It turns out that, at least for inviscid compressible flows, a bifurcation can occur only at flow regimes with...
We study in this paper some numerical schemes for hyperbolic systems with unilateral constraint. In particular, we deal with the scalar case, the isentropic gas dynamics system and the full-gas dynamics system. We prove the convergence of the scheme to an entropy solution of the isentropic gas dynamics with unilateral constraint on the density and mass loss. We also study the non-trivial steady states of the system.
We study in this paper some numerical schemes for hyperbolic systems with unilateral constraint. In particular, we deal with the scalar case, the isentropic gas dynamics system and the full-gas dynamics system. We prove the convergence of the scheme to an entropy solution of the isentropic gas dynamics with unilateral constraint on the density and mass loss. We also study the non-trivial steady states of the system.