Gasdynamic regularity: some classifying geometrical remarks.
We consider a simplified one-dimensional thermal model of nuclear matter, described by a system of Navier-Stokes-Poisson type, with a non monotone equation of state due to an effective nuclear interaction. We prove the existence of globally defined (large) solutions of the corresponding free boundary problem, with an exterior pressure which is not required to be positive, provided sufficient thermal dissipation is present. We give also a partial description of the asymptotic behaviour of the system,...
We prove the existence of a global solution for a one-dimensio- nal Navier-Stokes system for a gas with internal capillarity.
In this paper, we prove the existence of a global solution to an initial-boundary value problem for 1-D flows of the viscous heat-conducting radiative and reactive gases. The key point here is that the growth exponent of heat conductivity is allowed to be any nonnegative constant; in particular, constant heat conductivity is allowed.
Global existence of solutions for equations describing a motion of magnetohydrodynamic compresible fluid in a domain bounded by a free surface is proved. In the exterior domain we have an electromagnetic field which is generated by some currents located on a fixed boundary. We have proved that the domain occupied by the fluid remains close to the initial domain for all time.
The paper contains the proof of global existence of weak solutions of the viscous compressible barotropic gas for the initial-boundary value problem in a finite channel.
The paper contains the proof of global existence of weak solutions viscous compressible isothermal bipolar fluid of initial boundary value in a finite channel.
We prove small data global existence and scattering for quasilinear systems of Klein-Gordon equations with different speeds, in dimension three. As an application, we obtain a robust global stability result for the Euler-Maxwell equations for electrons.
We show the solvability of a nonlinear degenerate parabolic system of two equations describing the displacement of one compressible fluid by another, completely miscible with the first, in a one-dimensional porous medium, neglecting the molecular diffusion. We use the technique of renormalised solutions for parabolic equations in the derivation of a priori estimates for viscosity type solutions. We pass to the limit, as the molecular diffusion coefficient tends to 0, on the parabolic system, owing...
The paper contains the proof of global existence of weak solutions to the mixed initial-boundary value problem for a certain modification of a system of equations of motion of viscous compressible fluid. The modification is based on an application of an operator of regularization to some terms appearing in the system of equations and it does not contradict the laws of fluid mechanics. It is assumed that pressure is a known function of density. The method of discretization in time is used and finally,...
The concept of regularization to the complete system of Navier-Stokes equations for viscous compressible heat conductive fluid is developed. The existence of weak solutions for the initial boundary value problem for the modified equations is proved. Some energy and etropy estimates independent of the parameter of regularization are derived.