Displaying 121 – 140 of 165

Showing per page

Relaxation schemes for the multicomponent Euler system

Stéphane Dellacherie (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We show that it is possible to construct a class of entropic schemes for the multicomponent Euler system describing a gas or fluid homogeneous mixture at thermodynamic equilibrium by applying a relaxation technique. A first order Chapman–Enskog expansion shows that the relaxed system formally converges when the relaxation frequencies go to the infinity toward a multicomponent Navier–Stokes system with the classical Fick and Newton laws, with a thermal diffusion which can be assimilated to a Soret...

Solutions of a nonhyperbolic pair of balance laws

Michael Sever (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We describe a constructive algorithm for obtaining smooth solutions of a nonlinear, nonhyperbolic pair of balance laws modeling incompressible two-phase flow in one space dimension and time. Solutions are found as stationary solutions of a related hyperbolic system, based on the introduction of an artificial time variable. As may be expected for such nonhyperbolic systems, in general the solutions obtained do not satisfy both components of the given initial data. This deficiency may be overcome,...

Solutions of a nonhyperbolic pair of balance laws

Michael Sever (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We describe a constructive algorithm for obtaining smooth solutions of a nonlinear, nonhyperbolic pair of balance laws modeling incompressible two-phase flow in one space dimension and time. Solutions are found as stationary solutions of a related hyperbolic system, based on the introduction of an artificial time variable. As may be expected for such nonhyperbolic systems, in general the solutions obtained do not satisfy both components of the given initial data. This deficiency may be overcome,...

Some recent results on the Muskat problem

Angel Castro, Diego Córdoba, Francisco Gancedo (2010)

Journées Équations aux dérivées partielles

We consider the dynamics of an interface given by two incompressible fluids with different characteristics evolving by Darcy’s law. This scenario is known as the Muskat problem, being in 2D mathematically analogous to the two-phase Hele-Shaw cell. The purpose of this paper is to outline recent results on local existence, weak solutions, maximum principles and global existence.

Spectral methods for one-dimensional kinetic models of granular flows and numerical quasi elastic limit

Giovanni Naldi, Lorenzo Pareschi, Giuseppe Toscani (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we introduce numerical schemes for a one-dimensional kinetic model of the Boltzmann equation with dissipative collisions and variable coefficient of restitution. In particular, we study the numerical passage of the Boltzmann equation with singular kernel to nonlinear friction equations in the so-called quasi elastic limit. To this aim we introduce a Fourier spectral method for the Boltzmann equation [25, 26] and show that the kernel modes that define the spectral method have the correct...

Spectral methods for one-dimensional kinetic models of granular flows and numerical quasi elastic limit

Giovanni Naldi, Lorenzo Pareschi, Giuseppe Toscani (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we introduce numerical schemes for a one-dimensional kinetic model of the Boltzmann equation with dissipative collisions and variable coefficient of restitution. In particular, we study the numerical passage of the Boltzmann equation with singular kernel to nonlinear friction equations in the so-called quasi elastic limit. To this aim we introduce a Fourier spectral method for the Boltzmann equation [CITE] and show that the kernel modes that define the spectral method have the correct...

Study of a low Mach nuclear core model for two-phase flows with phase transition I: stiffened gas law

Manuel Bernard, Stéphane Dellacherie, Gloria Faccanoni, Bérénice Grec, Yohan Penel (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we are interested in modelling the flow of the coolant (water) in a nuclear reactor core. To this end, we use a monodimensional low Mach number model supplemented with the stiffened gas law. We take into account potential phase transitions by a single equation of state which describes both pure and mixture phases. In some particular cases, we give analytical steady and/or unsteady solutions which provide qualitative information about the flow. In the second part of the paper, we introduce...

Study of a three component Cahn-Hilliard flow model

Franck Boyer, Céline Lapuerta (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we propose a new diffuse interface model for the study of three immiscible component incompressible viscous flows. The model is based on the Cahn-Hilliard free energy approach. The originality of our study lies in particular in the choice of the bulk free energy. We show that one must take care of this choice in order for the model to give physically relevant results. More precisely, we give conditions for the model to be well-posed and to satisfy algebraically and dynamically consistency...

Sulla dinamica di una miscela di due fluidi comprimibili e non miscibili

Pasquale Giovine (1990)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si dà un ulteriore contributo alla specificazione delle equazioni dinamiche di bilancio per una miscela di due fluidi non miscibili ma comprimibili.

The approximate Riemann solver of Roe applied to a drift-flux two-phase flow model

Tore Flåtten, Svend Tollak Munkejord (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

We construct a Roe-type numerical scheme for approximating the solutions of a drift-flux two-phase flow model. The model incorporates a set of highly complex closure laws, and the fluxes are generally not algebraic functions of the conserved variables. Hence, the classical approach of constructing a Roe solver by means of parameter vectors is unfeasible. Alternative approaches for analytically constructing the Roe solver are discussed, and a formulation of the Roe solver valid for general closure...

The sharp-interface approach for fluids with phase change: Riemann problems and ghost fluid techniques

Christian Merkle, Christian Rohde (2007)

ESAIM: Mathematical Modelling and Numerical Analysis


Systems of mixed hyperbolic-elliptic conservation laws can serve as models for the evolution of a liquid-vapor fluid with possible sharp dynamical phase changes. We focus on the equations of ideal hydrodynamics in the isothermal case and introduce a thermodynamically consistent solution of the Riemann problem in one space dimension. This result is the basis for an algorithm of ghost fluid type to solve the sharp-interface model numerically. In particular the approach allows to resolve phase transitions...

Currently displaying 121 – 140 of 165