Displaying 41 – 60 of 79

Showing per page

Particle-in-wavelets scheme for the 1D Vlasov-Poisson equations ⋆⋆⋆

Romain Nguyen van yen, Éric Sonnendrücker, Kai Schneider, Marie Farge (2011)

ESAIM: Proceedings

A new numerical scheme called particle-in-wavelets is proposed for the Vlasov-Poisson equations, and tested in the simplest case of one spatial dimension. The plasma distribution function is discretized using tracer particles, and the charge distribution is reconstructed using wavelet-based density estimation. The latter consists in projecting the Delta distributions corresponding to the particles onto a finite dimensional linear space spanned by...

Quasineutral limit of the Euler-Poisson system for ions in a domain with boundaries II

David Gérard-Varet, Daniel Han-Kwan, Frédéric Rousset (2014)

Journal de l’École polytechnique — Mathématiques

In this paper, we study the quasineutral limit of the isothermal Euler-Poisson equation for ions, in a domain with boundary. This is a follow-up to our previous work [5], devoted to no-penetration as well as subsonic outflow boundary conditions. We focus here on the case of supersonic outflow velocities. The structure of the boundary layers and the stabilization mechanism are different.

Solving the Vlasov equation in complex geometries

J. Abiteboul, G. Latu, V. Grandgirard, A. Ratnani, E. Sonnendrücker, A. Strugarek (2011)

ESAIM: Proceedings

This paper introduces an isoparametric analysis to solve the Vlasov equation with a semi-Lagrangian scheme. A Vlasov-Poisson problem modeling a heavy ion beam in an axisymmetric configuration is considered. Numerical experiments are conducted on computational meshes targeting different geometries. The impact of the computational grid on the accuracy and the computational cost are shown. The use of analytical mapping or Bézier patches does not induce...

Steady tearing mode instabilities with a resistivity depending on a flux function

Atanda Boussari, Erich Maschke, Bernard Saramito (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider plasma tearing mode instabilities when the resistivity depends on a flux function (ψ), for the plane slab model. This problem, represented by the MHD equations, is studied as a bifurcation problem. For so doing, it is written in the form (I(.)-T(S,.)) = 0, where T(S,.) is a compact operator in a suitable space and S is the bifurcation parameter. In this work, the resistivity is not assumed to be a given quantity (as usually done in previous papers, see [1,2,5,7,8,9,10], but it depends...

Currently displaying 41 – 60 of 79