On the coronal heating mechanism by the resonant absorption of Alfvén waves.
A new numerical scheme called particle-in-wavelets is proposed for the Vlasov-Poisson equations, and tested in the simplest case of one spatial dimension. The plasma distribution function is discretized using tracer particles, and the charge distribution is reconstructed using wavelet-based density estimation. The latter consists in projecting the Delta distributions corresponding to the particles onto a finite dimensional linear space spanned by...
In this paper, we study the quasineutral limit of the isothermal Euler-Poisson equation for ions, in a domain with boundary. This is a follow-up to our previous work [5], devoted to no-penetration as well as subsonic outflow boundary conditions. We focus here on the case of supersonic outflow velocities. The structure of the boundary layers and the stabilization mechanism are different.
This paper introduces an isoparametric analysis to solve the Vlasov equation with a semi-Lagrangian scheme. A Vlasov-Poisson problem modeling a heavy ion beam in an axisymmetric configuration is considered. Numerical experiments are conducted on computational meshes targeting different geometries. The impact of the computational grid on the accuracy and the computational cost are shown. The use of analytical mapping or Bézier patches does not induce...
We consider plasma tearing mode instabilities when the resistivity depends on a flux function (ψ), for the plane slab model. This problem, represented by the MHD equations, is studied as a bifurcation problem. For so doing, it is written in the form (I(.)-T(S,.)) = 0, where T(S,.) is a compact operator in a suitable space and S is the bifurcation parameter. In this work, the resistivity is not assumed to be a given quantity (as usually done in previous papers, see [1,2,5,7,8,9,10], but it depends...