Page 1 Next

Displaying 1 – 20 of 27

Showing per page

Nonlinear boundary value problems with application to semiconductor device equations

Miroslav Pospíšek (1994)

Applications of Mathematics

The paper deals with boundary value problems for systems of nonlinear elliptic equations in a relatively general form. Theorems based on monotone operator theory and concerning the existence of weak solutions of such a system, as well as the convergence of discretized problem solutions are presented. As an example, the approach is applied to the stationary Van Roosbroeck’s system, arising in semiconductor device modelling. A convergent algorithm suitable for solving sets of algebraic equations generated...

Nonlinear models for laser-plasma interaction

Thierry Colin, Mathieu Colin, Guy Métivier (2006/2007)

Séminaire Équations aux dérivées partielles

In this paper, we present a nonlinear model for laser-plasma interaction describing the Raman amplification. This system is a quasilinear coupling of several Zakharov systems. We handle the Cauchy problem and we give some well-posedness and ill-posedness result for some subsystems.

Nonlinear Pulse Propagation

Jeffrey Rauch (2001)

Journées équations aux dérivées partielles

This talk gives a brief review of some recent progress in the asymptotic analysis of short pulse solutions of nonlinear hyperbolic partial differential equations. This includes descriptions on the scales of geometric optics and diffractive geometric optics, and also studies of special situations where pulses passing through focal points can be analysed.

Numerical computation of solitons for optical systems

Laurent Di Menza (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we present numerical methods for the determination of solitons, that consist in spatially localized stationary states of nonlinear scalar equations or coupled systems arising in nonlinear optics. We first use the well-known shooting method in order to find excited states (characterized by the number k of nodes) for the classical nonlinear Schrödinger equation. Asymptotics can then be derived in the limits of either large k are large nonlinear exponents σ . In a second part, we compute...

Numerical computation of solitons for optical systems

Laurent Di Menza (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we present numerical methods for the determination of solitons, that consist in spatially localized stationary states of nonlinear scalar equations or coupled systems arising in nonlinear optics. We first use the well-known shooting method in order to find excited states (characterized by the number k of nodes) for the classical nonlinear Schrödinger equation. Asymptotics can then be derived in the limits of either large k are large nonlinear exponents σ. In a second part, we compute...

Numerical resolution of an “unbalanced” mass transport problem

Jean-David Benamou (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We introduce a modification of the Monge–Kantorovitch problem of exponent 2 which accommodates non balanced initial and final densities. The augmented lagrangian numerical method introduced in [6] is adapted to this “unbalanced” problem. We illustrate the usability of this method on an idealized error estimation problem in meteorology.

Numerical resolution of an “unbalanced” mass transport problem

Jean-David Benamou (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We introduce a modification of the Monge–Kantorovitch problem of exponent 2 which accommodates non balanced initial and final densities. The augmented Lagrangian numerical method introduced in [6] is adapted to this “unbalanced” problem. We illustrate the usability of this method on an idealized error estimation problem in meteorology.

Currently displaying 1 – 20 of 27

Page 1 Next