Displaying 161 – 180 of 617

Showing per page

Distinguished Riemann-Hamilton geometry in the polymomentum electrodynamics

Alexandru Oană, Mircea Neagu (2012)

Communications in Mathematics

In this paper we develop the distinguished (d-) Riemannian differential geometry (in the sense of d-connections, d-torsions, d-curvatures and some geometrical Maxwell-like and Einstein-like equations) for the polymomentum Hamiltonian which governs the multi-time electrodynamics.

Div-curl lemma revisited: Applications in electromagnetism

Marián Slodička, Ján Jr. Buša (2010)

Kybernetika

Two new time-dependent versions of div-curl results in a bounded domain Ω 3 are presented. We study a limit of the product v k w k , where the sequences v k and w k belong to Ł 2 ( Ω ) . In Theorem 2.1 we assume that × v k is bounded in the L p -norm and · w k is controlled in the L r -norm. In Theorem 2.2 we suppose that × w k is bounded in the L p -norm and · w k is controlled in the L r -norm. The time derivative of w k is bounded in both cases in the norm of - 1 ( Ω ) . The convergence (in the sense of distributions) of v k w k to the product v w of weak limits...

EasyMSG : tools and techniques for an adaptive overlapping in SPMD programming

Pascal Havé (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

During the development of a parallel solver for Maxwell equations by integral formulations and Fast Multipole Method (FMM), we needed to optimize a critical part including a lot of communications and computations. Generally, many parallel programs need to communicate, but choosing explicitly the way and the instant may decrease the efficiency of the overall program. So, the overlapping of computations and communications may be a way to reduce this drawback. We will see a implementation of this techniques...

EasyMSG: Tools and techniques for an adaptive overlapping in SPMD programming

Pascal Havé (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

During the development of a parallel solver for Maxwell equations by integral formulations and Fast Multipole Method (FMM), we needed to optimize a critical part including a lot of communications and computations. Generally, many parallel programs need to communicate, but choosing explicitly the way and the instant may decrease the efficiency of the overall program. So, the overlapping of computations and communications may be a way to reduce this drawback. We will see a implementation of this...

Edge finite elements for the approximation of Maxwell resolvent operator

Daniele Boffi, Lucia Gastaldi (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we consider the Maxwell resolvent operator and its finite element approximation. In this framework it is natural the use of the edge element spaces and to impose the divergence constraint in a weak sense with the introduction of a Lagrange multiplier, following an idea by Kikuchi [14]. We shall review some of the known properties for edge element approximations and prove some new result. In particular we shall prove a uniform convergence in the L 2 norm for the sequence of discrete operators....

Edge finite elements for the approximation of Maxwell resolvent operator

Daniele Boffi, Lucia Gastaldi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we consider the Maxwell resolvent operator and its finite element approximation. In this framework it is natural the use of the edge element spaces and to impose the divergence constraint in a weak sense with the introduction of a Lagrange multiplier, following an idea by Kikuchi [14]. We shall review some of the known properties for edge element approximations and prove some new result. In particular we shall prove a uniform convergence in the L2 norm for the sequence of discrete...

Effect of Electrostriction on the Self-organization of Porous Nanostructures in Anodized Aluminum Oxide

L. G. Stanton, A. A. Golovin (2008)

Mathematical Modelling of Natural Phenomena

The self-organization of porous nanostructures in anodic metal oxide is considered. A mathematical model which incorporates the chemical reactions at the metal-oxide and oxide-electrolyte interfaces and elastic stress caused by the electrostrictive effects is developed. It is shown through linear stability analysis, that a short-wave instability exists in certain parameter regimes which can lead to the formation of hexagonally ordered pores observed in anodized aluminum oxide.

Electromagnetic scattering at composite objects : a novel multi-trace boundary integral formulation

Xavier Claeys, Ralf Hiptmair (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

Since matrix compression has paved the way for discretizing the boundary integral equation formulations of electromagnetics scattering on very fine meshes, preconditioners for the resulting linear systems have become key to efficient simulations. Operator preconditioning based on Calderón identities has proved to be a powerful device for devising preconditioners. However, this is not possible for the usual first-kind boundary formulations for electromagnetic...

Electromagnetic scattering at composite objects : a novel multi-trace boundary integral formulation

Xavier Claeys, Ralf Hiptmair (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

Since matrix compression has paved the way for discretizing the boundary integral equation formulations of electromagnetics scattering on very fine meshes, preconditioners for the resulting linear systems have become key to efficient simulations. Operator preconditioning based on Calderón identities has proved to be a powerful device for devising preconditioners. However, this is not possible for the usual first-kind boundary formulations for electromagnetic...

Currently displaying 161 – 180 of 617