Il paradosso elettrotermico
The main result of this paper is an integral estimate valid for non-negative solutions (with no reference to initial data) u ∈ L1loc (Rn x (0,T)) to(0.1) ut - Δ(u - 1)+ = 0, in D'(Rn x (0,T)),for T > 0, n ≥ 1. Equation (0.1) is a formulation of a one-phase Stefan problem: in this connection u is the enthalpy, (u - 1)+ the temperature, and u = 1 the critical temperature of change of phase. Our estimate may be written in the form(0.2) ∫Rn u(x,t) e-|x|2 / (2 (T - t)) dx ≤ C, 0 <...
Le transizioni di fase si presentano in svariati processi fisici: un esempio tipico è la transizione solido-liquido. Il classico modello matematico, noto come problema di Stefan, tiene conto solo dello scambio del calore latente e della diffusione termica nelle fasi. Si tratta di un problema di frontiera libera, poiché l'evoluzione dell'interfaccia solido liquido è una delle incognite. In questo articolo si rivedono le formulazioni forte e debole di tale problema, e quindi si considerano alcune...
The paper gives the answer to the question of the number and qualitative character of stationary points of an autonomous detailed balanced kinetical system.
A class of (1 + 1)-dimensional nonlinear boundary value problems (BVPs), modeling the process of melting and evaporation of solid materials, is studied by means of the classical Lie symmetry method. A new definition of invariance in Lie's sense for BVP is presented and applied to the class of BVPs in question.
Let be one solution towith a non-homogeneous term , and , where is a bounded domain. We discuss an inverse problem of determining unknown functions by , after selecting input sources suitably, where is an arbitrary subboundary, denotes the normal derivative, and . In the case of , we prove the Lipschitz stability in the inverse problem if we choose from a set with an arbitrarily fixed subdomain . Moreover we can take by making special choices for , . The proof is...