On a nonstationary model of a catalytic process in a fluidized bed.
We deal with a Penrose-Fife type model for phase transition. We assume a rather general constitutive low for the heat flux and treat the Dirichlet and Neumann boundary condition for the temperature. Some of our proofs apply to different types of boundary conditions as well and improve some results existing in the literature.
Our aim in this paper is to study the existence of solutions to a phase-field system based on the Maxwell-Cattaneo heat conduction law, with a logarithmic nonlinearity. In particular, we prove, in one and two space dimensions, the existence of a solution which is separated from the singularities of the nonlinear term.
The vibration problem in two variables is derived from the spatial situation (a plate as a three-dimensional body) on the basis of geometrically nonlinear plate theory (using Kármán's hypothesis) and coupled linear thermoelasticity. That leads to coupled strongly nonlinear two-dimensional equilibrium and heat conducting equations (under classical mechanical and thermal boundary conditions). For the generalized problem with subgradient conditions on the boundary and in the domain (including also...
We consider the full Navier-Stokes-Fourier system of equations on an unbounded domain with prescribed nonvanishing boundary conditions for the density and temperature at infinity. The topic of this article continues author’s previous works on existence of the Navier-Stokes-Fourier system on nonsmooth domains. The procedure deeply relies on the techniques developed by Feireisl and others in the series of works on compressible, viscous and heat conducting fluids.
The experimentally known phenomenon of oscillatory instability in convective burning of porous explosives is discussed. A simple phenomenological model accounting for the ejection of unburned particles from the consolidated charge is formulated and analyzed. It is shown that the post-front hydraulic resistance induced by the ejected particles provides a mechanism for the oscillatory burning.
This paper is concerned with some optimal control problems for the Stefan-Boltzmann radiative transfer equation. The objective of the optimisation is to obtain a desired temperature profile on part of the domain by controlling the source or the shape of the domain. We present two problems with the same objective functional: an optimal control problem for the intensity and the position of the heat sources and an optimal shape design problem where the top surface is sought as control. The problems...