The apparent propagation velocity of a wave
A one-dimensional model is proposed for determing the delay by which a wave reaching a certain point is effectively registered by a measuring instrument.
A one-dimensional model is proposed for determing the delay by which a wave reaching a certain point is effectively registered by a measuring instrument.
Solving the stationary heat equation we optimize the temperature on part of the boundary of the domain under investigation. First the Poisson equation is solved; both the Neumann condition on part of the boundary and the Newton condition on the rest are prescribed, the distribution of the heat sources being variable. In the second case, the heat equation also contains a convective term, the distribution of heat sources is specified and the Neumann condition is variable on part of the boundary.
This paper deals with the linear approximation scheme to approximate a singular parabolic problem: the two-phase Stefan problem on a domain consisting of two components with imperfect contact. The results of some numerical experiments and comparisons are presented. The method was used to determine the temperature of steel in the process of continuous casting.