Page 1

Displaying 1 – 17 of 17

Showing per page

Mathematical analysis of the discharge of a laminar hot gas in a colder atmosphere.

Stanislav Antontsev, Jesús Ildefonso Díaz (2007)

RACSAM

We study the boundary layer approximation of the, already classical, mathematical model which describes the discharge of a laminar hot gas in a stagnant colder atmosphere of the same gas. We start by proving the existence and uniqueness of solutions of the nondegenerate problem under assumptions implying that the temperature T and the horizontal velocity u of the gas are strictly positive: T ≥ δ > 0 and u ≥ ε > 0 (here δ and ε are given as boundary conditions in the external atmosphere)....

Mathematical and numerical analysis of radiative heat transfer in semi-transparent media

Yao-Chuang Han, Yu-Feng Nie, Zhan-Bin Yuan (2019)

Applications of Mathematics

This paper is concerned with mathematical and numerical analysis of the system of radiative integral transfer equations. The existence and uniqueness of solution to the integral system is proved by establishing the boundedness of the radiative integral operators and proving the invertibility of the operator matrix associated with the system. A collocation-boundary element method is developed to discretize the differential-integral system. For the non-convex geometries, an element-subdivision algorithm...

Mathematical and physical aspects of the initial value problem for a nonlocal model of heat propagation with finite speed

Jerzy A. Gawinecki, Agnieszka Gawinecka, Jarosław Łazuka, J. Rafa (2013)

Applicationes Mathematicae

Theories of heat predicting a finite speed of propagation of thermal signals have come into existence during the last 50 years. It is worth emphasizing that in contrast to the classical heat theory, these nonclassical theories involve a hyperbolic type heat equation and are based on experiments exhibiting the actual occurrence of wave-type heat transport (so called second sound). This paper presents a new system of equations describing a nonlocal model of heat propagation with finite speed in the...

Mathematical modeling of hygro-thermal processes in deformed porous media

Beneš, Michal, Krupička, Lukáš (2019)

Programs and Algorithms of Numerical Mathematics

In this contribution we propose a model of coupled heat and moisture transport in variable saturated deformed porous media. Solution of this model provides temperature, moisture content and strain as a function of space and time. We present the detailed description of the model and a~numerical illustrative example.

Mesoscopic description of boundary effects in nanoscale heat transport

F.X. Àlvarez, V.A. Cimmelli, D. Jou, A. Sellitto (2012)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

We review some of the most important phenomena due to the phonon-wall collisions in nonlocal heat transport in nanosystems, and show how they may be described through certain slip boundary conditions in phonon hydrodynamics. Heat conduction in nanowires of different cross sections and in thin layers is analyzed, and the dependence of the thermal conductivity on the geometry, as well as on the roughness is pointed out. We also analyze the effects of the roughness of the surface of the pores on the...

Model of pulverized coal combustion in a furnace

Robert Straka, Jindřich Makovička (2007)

Kybernetika

We describe behavior of the air-coal mixture using the Navier–Stokes equations for gas and particle phases, accompanied by a turbulence model. The undergoing chemical reactions are described by the Arrhenian kinetics (reaction rate proportional to exp - E R T , where T is temperature). We also consider the heat transfer via conduction and radiation. Moreover we use improved turbulence-chemistry interactions for reaction terms. The system of PDEs is discretized using the finite volume method (FVM) and an advection...

Model of shell metal mould heating in the automotive industry

Jaroslav Mlýnek, Roman Knobloch (2018)

Applications of Mathematics

This article focuses on heat radiation intensity optimization on the surface of a shell metal mould. Such moulds are used in the automotive industry in the artificial leather production (the artificial leather is used, e.g., on car dashboards). The mould is heated by infrared heaters. After the required temperature is attained, the inner mould surface is sprinkled with special PVC powder. The powder melts and after cooling down it forms the artificial leather. A homogeneous temperature field of...

Currently displaying 1 – 17 of 17

Page 1